
Hypothesis-Driven Identification of Neural Algorithms With
Dynamical Structure-Preserving Manifolds

Daniel Calbick1,2*, Jason Z. Kim3, Hansem Sohn4,5, Ilker Yildirim1,2,6,7,8*

1 Interdepartmental Neuroscience Program, Yale University
2 Wu Tsai Institute, Yale University
3 Department of Physics, Cornell University
4 Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon,
Republic of Korea
5 Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon,
Republic of Korea
6 Department of Psychology, Yale University
7 Department of Statistics & Data Science, Yale University
8 Foundations of Data Science Institute, Yale University

* daniel.calbick@yale.edu, ilker.yildirim@yale.edu

Abstract

Neuroscience aims to uncover the algorithms by which the brain builds and manipulates complex in-
ternal representations of objects, agents, and places. Existing reverse-engineering frameworks remain
ineffective for identifying these algorithms. Here, we present Dynamical Structure-Preserving Mani-
folds (dSPMs) — a new reverse-engineering framework that unifies symbolic, structure-preserving
abstractions with dynamical systems to enable hypothesis-driven identification of neural algorithms
undergirding mental representations. We use dSPM to identify a physical prediction algorithm in
the dorsomedial frontal cortex (DMFC) of macaques intercepting a ball in a Pong-like gameboard.
dSPM posits that the perceived initial conditions of a scene quickly collapse neural activity onto
a low-dimensional manifold, whose geometry corresponds to a structure-preserving physics-based
representation of the gameboard. dSPM better explains DMFC than alternatives, makes predictions
confirmed in neural data, and suggests prediction occurs not through next-step simulation or task-
performant heuristics, but via the physics-based topological structure of this manifold. dSPM offers
a tool for effectively exploring the computational foundations of biological intelligence.

Introduction

The brain generates rich internal representations of the world around us, enabling predictions about 1

how objects will move, agents will act, and places will connect. A central challenge of neuroscience is 2

to uncover the algorithms — i.e., the precise, if possible interpretable, computational transformations 3

— by which the brain builds and manipulates these complex mental representations. 4

Two reverse-engineering approaches dominate current work, each focusing on different perspec- 5

tives of cognition and featuring different advantages and limitations. On one hand, probabilistic 6

models of cognition specify interpretable hypotheses about mental representations [1], but typically 7

lack neural grounding. These models suggest that the brain involves structure-preserving represen- 8

tations of the external data-generating processes [2] — e.g., the physics that govern how objects 9

move and react to external forces —that in turn support predictions of what will happen next [3–5]. 10

However, these hypotheses are typically formulated as “computational-level” or functional accounts 11

of the brain [6, 7]: i.e., in practice, they are implemented using standard computer software and 12

high-level programming languages, without identifying an actual algorithm that may realize them 13

in biological neural circuits. On the other hand, deep neural network (DNN) models fit neural 14

1/31

data with remarkable precision but obscure the algorithms they learn. DNNs facilitate explorations 15

of task-optimized statistical representations as accounts of mental representations [8–10], which 16

can involve “shortcuts” and “simple tricks” that are typically, but not always, performant [10,11]. 17

Crucially, DNNs offer scientific hypotheses with respect to their architectures, training data, and 18

training objectives [12], and not directly with respect to the possible algorithms themselves. Instead, 19

these “implicit algorithms” need to be “extracted” after the fact using various interpretation tools, 20

regardless of whether these DNNs are large or small (e.g., [13, 14]). 21

This landscape of modeling approaches highlights a critical gap: intuitive cognitive theories that 22

are difficult to map to neurobiology, and powerful fits to neural data that do not allow algorithmic- 23

level control over hypotheses. A new approach is needed to precisely and interpretably identify 24

neural algorithms of complex mental representations. 25

Here, we introduce Dynamical Structure-Preserving Manifolds (dSPM) for hypothesis-driven 26

identification of neural algorithms and present a case study of physical scene prediction in macaque 27

frontal circuitry to establish its efficacy. At its core, dSPM unifies two influential but, to this 28

day, disparate views of the brain: that the brain can be viewed as a symbolic representation 29

system building and manipulating structure-preserving mappings of the external data-generating 30

processes [2, 15] (Fig. 1A) and that the brain can be viewed as the evolution of coupled dynamical 31

systems in population state space [16,17] (Fig. 1B). 32

The dSPM framework achieves this synthesis in two stages. First, a symbolic representation 33

hypothesis (e.g., a program-like specification of objects and their interactions) is captured in a 34

dynamical algorithm. This dynamical algorithm is a system of coupled ordinary differential equations 35

with appropriately expressive computational primitives to fully translate variables and functions 36

in the symbolic representation. Even though dynamical systems offer a common framework for 37

neuroscience, this framework is most often used to interpret or analyze otherwise high-dimensional 38

activity (e.g., [18,19]). The dSPM framework’s “top-down” construction of computation through 39

dynamics, by specifying a dynamical algorithm of complex representations, contrasts with this 40

traditional approach. 41

Second, dSPM embeds this dynamical algorithm within a reservoir computer, a biologically 42

plausible architecture for recurrent, distributed computation [20], by analytically determining the 43

connectivity (i.e., the adjacency matrix) of the reservoir computer without any training, training 44

data, or training objectives. The result is a population of interconnected units whose analytically-set 45

connectivity directs the flow of information to align with the dynamical algorithm of the hypothesized 46

symbolic representation. Accordingly, dSPM fills the modeling gap mentioned earlier: Unlike task- 47

optimized DNNs, dSPM’s reservoir computer is a white-box at the algorithm level, and unlike 48

probabilistic models of cognition, dSPM is falsifiable by neural data, enabling hypothesis-driven 49

exploration of the neural algorithms of complex mental representations. 50

To assess the efficacy of dSPM, we apply it to identify an algorithm for physical scene prediction 51

in macaque frontal circuitry. Rajalingham et al. [21] performed high-throughput single-cell recordings 52

in the dorsomedial frontal cortex (DMFC) of macaques performing a virtual ball interception task 53

in a Pong-like gameboard. The researchers occluded the ball’s trajectory partway through the trial, 54

finding evidence of prediction in the DMFC activity. How does the DMFC population represent 55

the gameboard, and how does this representation support the prediction of future trajectory? The 56

dSPM framework enables a new reverse-engineering capability: It allows us to test the possibility of 57

a physics-based, structure-preserving representation of the gameboard — including positions of the 58

ball and the walls, velocity, and collision state, as well as interaction rules according to Newtonian 59

mechanics (as in the cognitive modeling of ref. [3]) — but directly in the high-dimensional neural 60

activity. We implement dSPM for this domain using a recent methodology from the physics of 61

dynamical systems [22], which provides a dynamical algorithm of a physics-based representation 62

of the gameboard as well as a general-purpose analytical method for translating this dynamical 63

algorithm into the connectivity of a reservoir computer. We evaluate dSPM’s reservoir computer 64

against the DMFC activity, while making comparisons to powerful alternative models, including a 65

series of task-optimized recurrent neural networks (whose task performance is previously shown to 66

2/31

correlate with macaque behavioral outputs in the same task [23]) and a task-performant heuristic 67

specialized to this ball-interception task. 68

The dSPM model makes a surprising prediction about the DMFC activity, which we call 69

“single-state sufficiency for entire trajectory prediction”: The perceived initial conditions of a scene 70

should rapidly bias the high-dimensional neural state toward a low-dimensional manifold whose 71

physics-based topological structure deterministically encodes future trajectory information, without 72

a need for step-by-step simulation. Remarkably, we confirm this prediction in the DMFC activity: 73

within ∼ 250 ms, approximately by the time visual information reaches the frontal cortex [24], the 74

entire future trajectory of the ball becomes linearly decodable in the DMFC population activity. 75

Moreover, using representational similarity analysis [25], we show that dSPM explains statistically 76

significant and substantial variance in the neural data, subsuming nearly all of the variance that can 77

be explained by alternative models. These results support the hypothesis that DMFC implements a 78

structure-preserving physics-based representation of physical scenes and enables prediction via rapid 79

manifold collapse. This demonstrates dSPM’s efficacy in hypothesis-driven exploration of the neural 80

algorithms of complex mental representations. 81

3/31

Figure 1. Overview of the Dynamical Structure-Preserving Manifolds framework. (A)
The brain can be viewed as a symbolic representation system with structure-preserving mappings
of the external data-generating processes, including the physics that govern how objects move
and interact. (B) Example dynamical systems in neuroscience implementing complex cognitive
representations, including a ring attractor for heading direction, a torus for position in 2D space, and
bifurcation for decision-making. (C) Experimental design showing neural recordings from DMFC in
two macaques performing a ball interception task in a Pong-like gameboard. The “thought bubble”
indicates the hypothesis dSPM enables us to test: DMFC circuitry builds and runs forward a
physics-based representation of the gameboard, including the entities and relations of the ball, walls,
and the paddle. (D-i) The dSPM framework starts a computational-level, program-like description
that functionally captures the physics-based representation of the gameboard to support trajectory
prediction, but without neural grounding. (D-ii) Its dynamical algorithm, i.e., a set of coupled
differential equations, corresponding to the program-like representation in panel (D-i). Further
explained on panel (E). (D-iii) The dSPM’s reservoir computer analytically embeds the dynamical
algorithm in its connectivity matrix, without training, training objective, or training dataset.
This reservoir computer is a neurally falsifiable instantiation of the physics-based representation
hypothesis. (E) Collision detection and resolution in dSPM through dynamics and recurrent circuits
that undergo phase transitions when the ball approaches a wall. In each subpanel, leftmost line plots
are the phase portrait of the two coupled (out of 12) dynamical variables (cyan: velocity; yellow:
collision detection); the middle scatterplots show the hidden units of the reservoir computer; the
rightmost panels visualize the gameboard. (E-i) Unfolding the initial configuration by integrating
a positive velocity value; (E-ii) Collision detection and resolution via cubic bifurcation (yellow
line), which non-linearly bifurcates from one stable attractor in (E-i) to two stable attractors (outer
zero-crossings) and one repeller (middle zero-crossing) due to proximity to the wall. This transition
pulls the velocity variable, causing a sign flip (blue line). (E-iii) Unfolding the rest of the simulation,
similar to (E-i), but by integrating this negative velocity value −v.

82

Results 83

Ball interception task 84

To apply dSPM to identify a neural algorithm of physical scene prediction, we leveraged a virtual 85

ball-interception task, developed by Rajalingham et al. [26, 27]. In this task, rhesus macaques 86

(Macaca mulatta) use a joystick to control a paddle to intercept a moving ball on a computer screen 87

(Fig. 1C), much like the classical video game of Pong. During the late portion of its trajectory, the 88

ball becomes occluded, requiring some prediction strategy for successful interception. The task design 89

systematically varies the initial position and velocity of the ball across 79 unique conditions, yielding 90

a range of trajectories with varying durations (range: 1450-3750 milliseconds). A trial ends when 91

the ball reaches the terminal (rightmost) side of the board, regardless of whether it is successfully 92

intercepted with the paddle or not. Neural activity was recorded from the dorsomedial frontal cortex 93

(DMFC) of two macaques while they performed this task. Large-scale electrophysiological recordings 94

yielded activity from 1,889 neurons. The DMFC population activity contained information about the 95

ball position regardless of whether it was occluded, making it a prime candidate for implementing 96

physical scene prediction [27]. 97

Dynamical Structure-Preserving Manifolds 98

How does the DMFC circuitry represent the gameboard and support trajectory prediction? The 99

dSPM framework enables a previously unavailable modeling capability for answering this question: 100

neurally falsifiable models that implement symbolic structure-preserving representations of the 101

physical world. Cognitive theories explore the idea that physical prediction corresponds to building 102

4/31

and running forward a structure-preserving representation (i.e., a homeomorphic map; see [28]) 103

of the worldly causes that shape the way scenes unfold — i.e., an internal representation of 104

approximate Newtonian mechanics [29] (Fig. 1C “thought bubble”). Functionally, structure- 105

preserving representations are appealing: Having access to the worldly causes underlying a scene 106

is behaviorally efficacious [28], supporting efficient learning, flexible generalization [30–32], and 107

compositionality [33]. But their typical implementations [3–5, 34], which involve off-the-shelf 108

computer graphics software and high-level programming languages, do not inform how biological 109

neural systems could implement physics-based, structure-preserving representations of objects. 110

Following this cognitive modeling work [3], we can express a physics-based representation of the 111

gameboard at an abstract computational-level by the properties and relations of the entities on 112

the board (ball, paddle, walls), including the ball’s position and how it changes over time (linear 113

dynamics), if-else branching for collision detection and force relations (Fig. 1D-i; see Methods 114

and Supplementary Fig. 1 for a full description). What neural mechanisms could ground such 115

structure-preserving physics-based representations of scenes in the brain? 116

The dSPM framework builds on an important clue from the recent work in neuroscience: The 117

geometry of low-dimensional, latent manifolds underlying neural populations is found to correspond 118

to basic structure-preserving representations of the world [17] (Fig. 1B), such as ring attractor 119

and toroidal geometry for heading direction and position in 2D space, respectively [17,35–38]. For 120

example, in the heading direction circuitry of the fruit fly, neural activity traces a ring-shaped 121

manifold corresponding to the circular nature of head orientation [37,38]. It remains unclear how to 122

construct manifolds that compute complex mental representations — beyond the relatively simple 123

domains that have so far been explored. 124

This brings us to the algorithmic-level formulation of dSPM: We suggest that in the brain, these 125

physics-based representations are encoded in latent dynamical algorithms (Fig. 1D-ii). A dynamical 126

algorithm is formulated by coupling multiple dynamical variables through the coefficients that 127

determine their dynamics. Unlike the common fixed-point attractors [39,40], this coupling defines 128

a “dynamical manifold” — a manifold whose attractors and repellers not only change over time, 129

but can be computationally harnessed as dynamical variables to build algorithms (cf. [41]). These 130

dynamical manifolds can express symbolic, program-like primitives, including branching-dependent 131

computations such as collision detection and resolution. To create these primitives, we leverage 132

controlled bifurcations as introduced in ref. [42]. For example, by defining the standard cubic 133

bifurcation ẋ = g(t)x− ax3, we obtain a flexible computational substrate where stable fixed points 134

(attractors) and unstable fixed points (repellers) can be precisely modulated through time-varying 135

parameters, denoted g(t). To algorithmically specify collision detection and resolution, we exploit 136

this property (Supplementary Fig. 2A): When the ball is far from any boundary (g(t) ≪ 0), the 137

network acts as a pure velocity integrator with a single, globally stable fixed point at the origin. As 138

the ball approaches a wall (g(t) ≥ 0), the control parameter crosses a critical value and the system 139

undergoes a pitchfork bifurcation: the origin loses stability and two new stable fixed points emerge. 140

The state is rapidly drawn to one of these attractors, where a downstream hysteretic element flips the 141

sign of the velocity, sending the ball back into the arena. The dSPM couples additional differential 142

equations (Fig. 1D-ii), fully specifying a dynamical algorithm in 12 equations that corresponds to 143

the symbolic representation of the gameboard in Fig. 1D-i (see Methods and Supplementary Fig. 2, 144

3 for the full dynamical algorithm). Much like a ring attractor captures the structure of heading 145

direction, the geometry of the resulting manifold functionally maps a physics-based representation 146

of the gameboard. 147

To make this dynamical algorithm testable/falsifiable in neural data, dSPM compiles it into 148

a tanh-activated reservoir computer (Fig. 1D-iii) [20, 43]. Following ref. [22], we analytically set 149

the reservoir computer’s connectivity weights such that the network’s population dynamics align 150

with the dynamical algorithm, without training, training data, or training objectives. In brief, this 151

method “decompiles” the reservoir computer’s hidden state and dynamics into an analytical basis of 152

its inputs and uses this basis to program the dynamical algorithm (the set of ordinary differential 153

equations) into the adjacency matrix of the reservoir computer (see Methods and Supplementary 154

5/31

Information). The result is what we call a flow-matched embedding: When we project the reservoir 155

computer’s activity, which is much higher dimensional than the dynamical algorithm (1000 units in 156

the reservoir computer vs. 12 dynamical variables in the dynamical algorithm), onto the dynamical 157

variables, the projected dynamics follow the same trajectories prescribed by the dynamical algorithm. 158

In dynamical systems terms, this is a topologically semi-conjugate relationship — the reservoir 159

computer approximates the same flow field as the dynamical algorithm and thus underlying the 160

symbolic representation, though in a higher-dimensional space (Fig. 1E; see Supplementary Fig. 3 161

for a dynamic visualization). 162

This completes our description of our dSPM model — a novel reverse-engineering tool that 163

embeds the cognitive hypothesis of a structure-preserving, physics-based representation on one end 164

and is falsifiable in high-resolution neural data on the other. To compare dSPM to neural data, we 165

provide the model with the initial configuration of a given condition (for each of the 79 conditions 166

the monkeys experienced), including the initial ball position and velocity. 167

Single-state sufficiency mechanism for rapid ball endpoint prediction 168

The dSPM’s reservoir computer, by construction, embeds a lower-dimensional manifold whose 169

geometry corresponds to a physics-based representation of the scene. Once configured with the 170

initial conditions of the gameboard (e.g., initial position and velocity of the ball), this manifold 171

can be projected into the future without any additional sensory input (Fig. 2A). Ordinarily, this 172

can be accomplished via a step-by-step simulation of the reservoir computer, which corresponds 173

to unfolding the hidden state of the reservoir computer using its recurrent connectivity weights. 174

However, future predictions, including the far-out trajectory of the scene, can also be linearly read 175

out of these hidden states. This is because each momentary hidden state contains information not 176

only about the current ball position and velocity but also all 12 dynamical variables that determine 177

the local curvature of the manifold. Thus, if the physics-based representation truly determines the 178

flow field of the dynamical system, the properties of the local vector field at any point should specify 179

global trajectories once the initial conditions provide sufficient constraint [44,45]. 180

We turn to a striking feature of the DMFC population activity to make an initial test of this 181

single-state sufficiency mechanism. Rajalingham et al. [27] found that DMFC quickly encodes the 182

ball’s final position where it is intercepted or exits the gameboard (“ball endpoint”) by a mere 183

250 ms after trial onset. To replicate this result and analyze both the neural data and the models, 184

we created our own decoding pipeline (Fig. 2B). For each trial, we constructed a neural or model 185

state matrix at individual time bins (for a bin size of 50 ms), then used a generalized linear model 186

(GLM) [46] to decode the ball endpoint (see Methods). Fig. 2C (left) shows our replication of 187

Rajalingham et al.’s finding [27] of rapid ball endpoint encoding in DMFC. Rajalingham et al. [27], 188

based on the inability of the models they tested to explain their data, concluded that the brain may 189

be operating on two different “strategies”: an offline prediction of task-relevant information (ball 190

endpoint) that occurs early in the trial, with an unspecified mechanism, and an online next-time 191

step prediction in the rest of the trial. 192

The dSPM model offers the dramatically different possibility of single-state sufficiency: A 193

low-dimensional latent manifold embedded in DMFC renders the ball endpoint a linear projection 194

along the surface of this manifold. Remarkably, applying our neural decoding pipeline to dSPM 195

provides evidence for this possibility, recapitulating the rapid prediction ability of the DMFC with 196

high fidelity (Fig. 2C, middle). The correlation between the decoded ball positions from dSPM’s 197

hidden states and the actual ball position at interception closely matches the pattern observed in 198

the neural data, maintaining high correlation (Pearson’s r > 0.8) from early time points through 199

approximately 2250 milliseconds (at which point correlation decreases due to the smaller number of 200

Pong conditions long enough for decoding analysis). In an additional, finer-grained analysis, we 201

separated the 79 conditions in the dataset into “zero-bounce” (direct trajectories without a wall 202

collision) and “one-bounce” (trajectories with one wall collision) conditions (Supplementary Fig. 5). 203

This finer-grained analysis provides further evidence of the consistency between the DMFC and the 204

dSPM model: Both in the neural data and dSPM, we find robust ball endpoint prediction within 205

6/31

each bounce condition, with slightly better performance for zero-bounce trials. 206

Figure 2. Confirmation of dSPM’s single-state sufficiency mechanism of physical
prediction in DMFC activity. (A) dSPM posits that the perceived initial configurations of the
gameboard bias the DMFC activity toward a low-dimensional manifold whose geometry corresponds
to a physics-based representation of the gameboard. This manifold renders points along the future
trajectory of the ball lawfully decodable. (B) Our decoding pipeline is applied to both the neural
data and models. This panel depicts the analysis of 1,889 DMFC neurons across 79 conditions
in the dataset. For each time bin of 50 ms (from the start of the trial to the end), we used
a generalized linear model (GLM) to decode the ball’s position (x-axis) at paddle interception
(“ball endpoint”). (C) Temporal evolution of decoding accuracy for the ball endpoint from DMFC,
dSPM, and task-optimized RNNs. DMFC neural activity (left, red) shows early prediction capacity
(∼ 250ms after trial onset), with high correlation (Pearson’s r > 0.8) maintained until late in the
trial. This pattern is closely matched by dSPM (middle, cyan), while task-optimized RNNs (right,
green/brown) show slowly improving prediction accuracy over time. (D) Stability of dynamical
attractors is necessary for persistent ball endpoint prediction over time in dSPM. dSPMs with more
units (1000 vs. 500 vs. 300) more accurately simulate scenes (Supplementary Fig. 4) and maintain
stable predictions of ball endpoint for more extended periods. (E) Decoding accuracy for the ball’s
position across multiple points along its future trajectory (analyzed from -1450ms relative to paddle
interception), using neural and model state vectors at 250 ms after trial onset. This confirms the
striking prediction of dSPM: at the trial start, the complete future trajectory of the ball, not just
the endpoint, is decodable in DMFC (Pearson’s r > 0.8 throughout time for DMFC and dSPM),
but not in task-optimized RNNs. (F) Violin plots and statistical comparisons of the entire future
trajectory decoding performance of models. dSPM achieves significantly lower error rates (left) and
higher correlation (right), relative to task-optimized RNNs in matching DMFC.

7/31

Crucially, in DMFC, this rapid prediction ability of the ball endpoint emerges 250 ms after 207

trial onset, whereas in dSPM (which is provided with the initial configurations of trials), it is 208

immediate (Fig. 2C left vs. middle). This is consistent with the 200-250 ms signal transduction 209

time to this frontal region [24], accounting for the time to “initialize” the DMFC manifold with 210

the initial configuration of the gameboard. This suggests that as soon as the perceived initial 211

configuration of the gameboard is available to DMFC, its neural activity is biased toward an 212

dSPM-like low-dimensional manifold whose geometry corresponds to a physics-based representation 213

of the scene. 214

An additional prediction of the single-state sufficiency mechanism is that this ability to linearly 215

decode far-out future states should gracefully degrade with the degrading accuracy of the manifold 216

embedded within the reservoir computer. Testing this prediction in the DMFC activity would require 217

perturbation techniques [47] to modulate the accuracy of the neural manifold, which future research 218

should explore. But we can readily test this possibility in the dSPM model. Specifically, we vary the 219

accuracy of the manifold by reducing the number of hidden units and thus the computational capacity 220

of the reservoir computer. Bigger reservoir computers more accurately simulate the gameboard 221

(Supplementary Fig. 4), suggesting that sufficient dimensionality is required to approximate the 222

physical scene. Crucially, we found that these larger networks also maintained stable predictions 223

of ball endpoint for longer periods (Fig. 2D), similar to the DMFC population. This result 224

provides insight into the computational requirements — the accuracy of the manifold in encoding 225

physics-based representations — for robust physical scene prediction in biological neural networks. 226

Confirming the entire future trajectory prediction of dSPM 227

These results, focusing on the rapid prediction of the task-relevant ball endpoint information, lead 228

to a remarkable prediction about the DMFC activity: Because the ball endpoint is not coded in any 229

special way in the structure-preserving representation of the gameboard within dSPM, we predict 230

that at the start of the trial, not only the endpoint but also the entire future trajectory of the ball 231

will be linearly decodeable in the neural data. In other words, a manifold configured by the perceived 232

initial conditions of the gameboard should make not just the ball endpoint linearly decodable, but 233

also the rest of the trajectory in between. Remarkably, we confirm this prediction in both the DMFC 234

activity and dSPM. In the DMFC, when decoding from neural state at 250 milliseconds after trial 235

onset, we reconstruct the ball’s position at any point along its future trajectory with high accuracy 236

(Pearson’s r > 0.8; Fig. 2E, left). The dSPM model replicates this capability, maintaining high 237

correlation throughout the future trajectory (Fig. 2E, middle). These results further establish that 238

physical prediction in DMFC is a consequence of the geometry of a latent, low-dimensional manifold 239

embedded within the neural activity that encodes a physics-based representation of the gameboard. 240

Alternative models cannot explain key features of the DMFC activity 241

To isolate dSPM’s explanatory power, we compare it to two distinct classes of alternative models: 242

(i) task-optimized RNNs and (ii) a task-performant heuristic taking advantage of the specifics of the 243

current ball-interception task. First, task-optimized RNNs acquire high-level statistical regularities 244

in their training datasets needed to minimize the respective objectives under which they are trained. 245

One group of RNNs, which we call “Next-time point RNNs”, is trained on the combined objectives 246

of predicting where the ball will be in the next time step and where to place the paddle for successful 247

interception. Another group of RNNs, which we call “Paddle-only RNNs”, is trained only on the 248

objective of where to place the paddle. Crucially, these models are directly from ref. [26], which 249

showed that the ball interception performance of these models strongly correlates with the behavioral 250

performance of the animals in the current task [26]. Second, we also test a heuristic strategy, called 251

“Linear Map”, specifically designed for the current task. The linear map heuristic has access to 252

the moment-by-moment position and velocity of the ball and a linear regression to map this state 253

information to the ball endpoint. Does dSPM provide explanatory power over the DMFC activity, 254

above and beyond what can be explained by these strong alternatives? 255

8/31

Critically, we find that the answer is yes: these alternative models fail to reproduce the full 256

extent of DMFC’s future-trajectory-prediction abilities. We summarize these results along three 257

points. First, standard task-optimized RNNs (next-time point and paddle-only models of ref. [26]) 258

fail to reproduce DMFC- and dSPM-like rapid ball endpoint prediction, a result we replicate 259

and extend from Rajalingham et al. [27] (Fig. 2C, right; see Methods). Instead, they show a 260

gradual improvement over time. Moreover, these RNNs qualitatively decouple from neural dynamics 261

at the finer-grained analysis of conditions with only “zero-bounce” or “one-bounce” trajectories 262

(Supplementary Fig. 5). 263

Second, unlike the DMFC and dSPM, these RNNs also do not recapitulate the full future 264

trajectory prediction, instead showing decreasing prediction accuracy for more distant future time 265

points (Fig. 2E, right). Statistical analysis confirms that when compared to DMFC data, dSPM 266

achieves significantly higher correlation and lower error than these task-optimized RNNs (Fig. 2F). 267

Third, the simplicity of the gameboard in the current ball interception task allows for a heuristic, 268

non-simulation strategy for predicting the ball’s endpoint — the linear map heuristic, which can 269

accurately predict the ball’s endpoint from the early position/velocity state vector, similar to 270

DMFC and dSPM (Supplementary Fig. 5). Does the DMFC neural activity employ this specialized 271

heuristic strategy, instead of the structure-preserving nonlinear dynamics that dSPM stipulates? 272

To answer this, we analyzed a divergent prediction made by the linear map heuristic and dSPM 273

(Supplementary Fig. 6): the generalization performance of the ball endpoint decoder across Pong 274

conditions with zero-bounce versus one-bounce trajectories. Linear map yields a time-invariant, 275

nearly perfect generalization of the endpoint decoder across the bounce groups. In contrast, dSPM, 276

due to its bifurcating dynamics for collision detection and resolution, yields a time-dependent and 277

less performant generalization of the endpoint decoder across the bounce groups. When we apply 278

this cross-bounce endpoint decoder analysis to the DMFC activity, we find that it more closely aligns 279

with dSPM, demonstrating a time-dependent cross-bounce generalization. That DMFC qualitatively 280

decouples from the linear map heuristic provides important evidence for dSPM’s physics-based 281

representation. Despite the availability of a simpler solution that generalizes perfectly across bounce 282

groups (i.e., the linear map heuristic), DMFC implements condition-specific nonlinear dynamics, 283

much like the bifurcating attractors of dSPM (illustrated in Supplementary Fig. 3 animation). 284

We suggest that the inability of these alternatives to explain DMFC reflects DMFC’s evolution 285

for diverse 3D physical scenes, not just 2D ball tracking on a simple gameboard. Indeed, both 286

DMFC and dSPM match the endpoint decoding performance of the linear map heuristic within each 287

bounce condition (both achieve ∼ 0.8 correlation; Supplementary Fig. 5), while implementing rich 288

condition-specific dynamics that does not generalize across bounce conditions. This computational 289

strategy may explain the involvement of frontal circuitry across diverse sensorimotor behaviors 290

requiring physics prediction, including reaching movements [48], pursuit and evasion [49], and object 291

manipulation [50]. 292

Similarly, the failure of task-optimized RNNs to replicate rapid endpoint prediction highlights 293

the central difficulty we identified in the Introduction regarding using standard deep neural networks 294

to study neural algorithms. Despite the rigorous exploration of training objectives and architectures 295

by researchers (e.g., [21, 23, 51]), it is not readily clear what it would take to prevent these task- 296

optimized RNNs from exploiting shortcuts that deliver good task performance without rapid endpoint 297

prediction ability. Training objectives, datasets, and network architectures provide only indirect tools 298

to synthesize the often black-box task-optimized statistical representations in DNNs. In contrast, the 299

dSPM framework empowers researchers with direct explorations of falsifiable algorithmic possibilities 300

of neural mechanisms. Together, these results of alternative models suggest the brain prioritizes 301

physics-based structure-preserving representations over computational shortcuts, even when these 302

learned shortcuts or simple heuristics would suffice for task performance. 303

9/31

Figure 3. dSPM captures the similarity structure of DMFC neural dynamics across
moments and conditions. (A) We performed a representational similarity analysis comparing
DMFC neural similarity matrix to the similarity matrices of each model. (B) dSPM reservoirs
achieve a significantly higher correlation (Spearman’s ρ) than the alternatives with lesser structure-
preserving representations. (C) A schematic of the partial regression pipeline to determine and
compare unique variance explained by different model types. (D) Correlation (Spearman’s ρ)
between model and neural representational similarity matrices is shown. The plot is organized by
model type (top: dSPM; middle: next-time point; bottom: linear map) and residualization condition
(controlling for variance explained by different model types). Supplementary Fig. 7 shows the full
set of residualization analysis. dSPM shows significantly higher correlations with neural data than
alternatives across all residualization settings. Critically, when residualizing dSPM reservoir states
from alternatives, there remains little explanatory power of these alternative models, while dSPM
maintains a high correlation even after residualizing out all alternative models. This asymmetry
indicates that dSPM reservoir captures fundamental aspects of neural computation not present in
alternative models.

dSPM captures representational similarity of DMFC dynamics and sub- 304

sumes what can be explained by alternatives 305

Finally, we also tested the ability of dSPM and alternative models to explain the representational 306

similarity of neural dynamics across the 79 Pong conditions and moments in these conditions, using 307

representational similarity analysis (RSA; see Methods) [52]. Relative to the decoding-based analysis 308

we have so far focused on, RSA imposes a qualitatively different test of candidate models, involving 309

a direct analysis of their full internal states for explaining DMFC activity. In addition, RSA, via 310

partial correlation, allows us to test whether dSPM maintains explanatory power after accounting for 311

the variance that can be explained by alternative models (the task-performant linear map heuristic 312

and the task-optimized RNNs), which lack the physics-based representation encoded in dSPM. 313

For a given data source (either a model or DMFC), we built a representational similarity matrix 314

where each cell is the correlation between the activity at time-point ti in condition ki and the activity 315

at time-point tj in condition kj (Fig. 3A). We found that the similarity matrix of dSPM achieves 316

significantly and substantially higher correlations with the DMFC similarity matrix (r = 0.59), 317

compared to the similarity matrices of the next-time point (r = 0.35, p < 0.001) and paddle-only 318

(r = 0.08, p < 0.001) models, as well as the linear map heuristic (r = 0.32, p < 0.001) (Fig. 3B; all p 319

values indicate pairwise comparisons against dSPM using direct bootstrap hypothesis testing). 320

10/31

We then used partial correlation analysis to ask the extent to which the dSPM explains non- 321

overlapping variance in the DMFC similarity matrix, relative to the task-optimized RNNs and linear 322

map heuristic (Fig. 3C; see Methods). We found that dSPM explains a substantial amount of 323

variance after residualizing both kinds of task-optimized RNNs; but this was not the case for the 324

next-time point model which had nearly no variance left to explain after residualizing the dSPM 325

and paddle-only models (Fig. 3D; see Supplementary Fig. 7 for a full residualization analysis). 326

The differences in the residualized variances explained by dSPM versus next-time point RNN were 327

statistically significant (p < 0.001, Fig. 3D, Supplementary Fig. 7). 328

We found a strikingly similar result when we repeated these partial regression analysis between 329

dSPM and the linear map heuristic (Fig. 3C, D). This heuristic represented each time point 330

for each condition using the ground-truth position and velocity of the ball (corresponding to the 331

“Oracle” covariate in ref. [51], which outperformed all model variants considered in that study). We 332

found that dSPM not only statistically significantly and substantially outperforms this covariate 333

(r = 0.59 for dSPM versus r = 0.32 for linear heuristic), but also subsumes all of its portion of 334

the explained variance (Fig. 3D). These results strongly suggest a neural mechanism of physical 335

prediction in DMFC through a latent, low-dimensional manifold whose geometry corresponds to a 336

physics-based representation of the gameboard, instead of task-optimized statistical representations 337

or task-performance heuristics. 338

Discussion 339

Distinctively, the present work synthesizes two prominent views of the brain, across the fields of 340

cognitive science and neuroscience, which have so far been developed largely independently of each 341

other: The brain as a symbolic representation system of structure-preserving mappings [28, 53] and 342

the brain as a dynamical system of low-dimensional manifolds [17]. Unlike typical cognitive models 343

that focus on computational-level explanations and behavioral data, dSPM penetrates through 344

levels of analysis and offers falsifiable hypotheses of neural mechanisms [54]. And instead of the 345

common neuroscientific approach of analyzing high-dimensional neural data through dimensionality- 346

reduction techniques to visualize low-dimensional manifolds (e.g., [55]), our approach provides a 347

computationally constructive handle on these manifolds. By doing so, this work suggests a neural 348

mechanism of physical prediction in macaque DMFC, as a latent low-dimensional manifold whose 349

geometry corresponds to physics-based representations of scenes. 350

We focused on neural mechanisms of physical prediction, but we believe dSPM will generalize to 351

other sorts of structure-preserving representations, including representations of agents (e.g., [56]), 352

places [57], and more complex physical scenarios (e.g., [5]). The key to this generalization is to 353

build dynamical algorithms of these domains. (The analytical mapping from dynamical algorithms 354

to reservoir computer is general-purpose.) Our optimism is due to three reasons. First, from the 355

early days of computation to recent times, despite interruptions, dynamical algorithms have been 356

developed for increasingly sophisticated problems, from the “differential analyzer” of Vannevar Bush 357

and colleagues [58] for solving integrals and other engineering problems to virtualization, inverse 358

problems, and dynamical memories by Kim & Bassett [22]. Second, many of the computational 359

primitives we utilized here for representing the gameboard, including objects, if-else branching 360

collision logic, and velocity integration, are common motifs in the structure-preserving representations 361

of more complex physical scenarios and other domains. Third, the strength of evidence we provide 362

for dSPM in the present work motivates us, and hopefully other researchers, to pursue the extensions 363

of dSPM beyond the current case study of physical prediction. For instance, we see the domains of 364

mental navigation as in [47] and online perception, physical prediction, and planning settings as 365

in [49] as immediate next targets for generalizing dSPM. 366

With such generalization at hand, dSPM promises to be an invaluable reverse-engineering tool for 367

uncovering the computational foundations of biological intelligence. In biology, prey species are often 368

born with the ability to evade predators and seek safety in a complex, dynamically changing world, 369

pointing to the possibility of sophisticated precocial physical prediction with little or no opportunity 370

11/31

for experiential learning. Moreover, the biological networks controlling these behaviors support 371

rapid and flexible experiential learning in survival-critical behaviors [59,60]. Similarly, despite the 372

helplessness of human infants, developmental psychology suggests a sophisticated starting point for 373

human cognition [61]. The dSPM model, by synthesizing symbolic representations and dynamical 374

systems, achieves what biology demonstrates: efficient, robust, and interpretable intelligence that 375

begins with, rather than learns, the fundamental rules governing our world. 376

Methods 377

Dynamical Structure-Preserving Manifolds (dSPM) 378

Here we provide the details of the computational, algorithmic, and implementation levels of dSPM. 379

Computational-Level Description: Structure-preserving, physics-based representations 380

for physical prediction 381

At the computational level, physical prediction can be described as building and manipulating physics- 382

based representations of the physical world [29], flexibly supporting downstream adaptive behaviors. 383

Following Battaglia et al. [29], we provide a structure-preserving physics-based representation of 384

the gameboard in Supplementary Fig. 1. This symbolic program describes the entities (objects, 385

walls, paddle) and their dynamics and interactions, using a high-level object-oriented programming 386

language. The dSPM framework transforms such computational-level hypothesis, which lack neural 387

grounding, into falsifiable proposals of neural mechanisms. 388

Algorithmic-Level: Dynamical Algorithm 389

Recent work in neuroscience provides evidence that basic structure-preserving representations, such 390

as one’s heading direction or 2D position in space, are encoded in low-dimensional, latent manifolds 391

underlying high-dimensional neural activity. These manifolds contain attractor dynamics (stable 392

and unstable points of attraction and repulsion) that functionally map entities and their relations 393

in the world. To realize complex cognitive representations, we need to express significantly more 394

sophisticated computations in these dynamics. 395

To do so, we build on Kim & Bassett [42] to formulate a dynamical algorithm of a physics-based 396

representation of the gameboard. This dynamical algorithm (Supplementary Fig. 2, 3) is a set of 397

12 coupled differential equations whose outputs are denoted as {z1, z2, . . . , z12}. This dynamical 398

algorithm defines a dynamical manifold, meaning that it’s a manifold whose attractors and repellers 399

change over time. These dynamical attractors — i.e., nullclines in phase space that change with 400

time t — correspond to a physics-based representation of the gameboard, including position updates, 401

as well as collision detection and resolution. The 12 dynamical variables implement four main 402

computational blocks (corresponding to the four code blocks in Supplementary Fig. 1) based on two 403

forms of third-order polynomial logic. 404

We first describe these polynomials. 405

• Pitchfork bifurcation where f(t) controls whether we have a single stable attractor at the 406

origin, (f(t) ≤ 0), or two symmetric non-zero stable fixed points at (±
√

f(t), 0) and one 407

unstable attractor at the origin, (f(t) > 0), (textbook example, [62]) 408

1

τ
ż = f(t)z − z3

• Polynomial-Shift Operator The second cubic simply slides the attracting point left or right 409

without changing its stability. The time-varying term f(t) raises or lowers the cubic, while 410

the constants α and β tune the slope so that |z| remains ≤ 1. Keeping the state in this range 411

guarantees that the activity vector of our recurrent network never leaves the ball-park set by 412

12/31

the weight matrix’s spectral radius (roughly, the largest eigenvalue magnitude) [63], preventing 413

runaway excitation 414

1

τ
ż = −αz3 + βz + f(t)

In these equations, the coefficient τ controls the sensitivity of the dynamics encoded in these 415

polynomials to local changes (as well as initial conditions). Specifically, when |τ | ≫ 0, then the 416

derivatives on either side of the fixed points are much stronger (Supplementary Fig. 2), making 417

slight changes in the system more sensitive to changes. (This time constant is multiplicative to the 418

global time constant of our reservoir computer, represented by γ in our update equation in the next 419

section.) 420

The four computational blocks of our dynamical algorithm are as follows. 421

1. Constant registers (velocity components) 422

To make each trial’s initial velocity available to the rest of the network, we reserve two 423

dedicated state variables, z1 and z2, whose dynamics are purely integrative registers: 424

|vx| 7→ ż1 = 0 (ż1)

|vy| 7→ ż2 = 0 (ż2)

Because ż1 = ż2 = 0, these variables act as constants during the simulation, giving the dSPM 425

a read-only handle on (vx, vy) while re-using the same recurrent weights across all trials. 426

2. Velocity Logic 427

ẋ 7→ ż3 = z3 + (z5)z1 (ż3)

ẏ 7→ ż4 = z4 + (z7)z2 (ż4)

3. Hysteretic Switch for Nonlinear Reflections. 428

Each state variable takes values in [−xc, xc], with 429

−xc ≡ “low” (0), +xc ≡ “high” (1).

The dynamic logic couples two recurrent variables, the wall-collision variable (z11) and the 430

opposite hysteretic variable z5 ↔ z6 and z7 ↔ z8 431

f(yi, yj) =
(yi − xc)(yj − xc)

2xc
− xc

implements a Boolean NAND gate: 432

(yi, yj) 7−→ f =

{
−xc if yi = +xc or yj = +xc,

+xc if yi = yj = −xc.

Because the output itself sits at a stable fixed point (±xc), it retains its state against small 433

perturbations — i.e. it forms a hysteretic memory element. Cross-coupling two such units 434

yields a bistable attractor manifold that we use as the circuit’s nonlinear reflection (bounce) 435

switch. 436

13/31

sign(vx) 7→ 1
20 ż5 = −αz35 + βz5 + f(z11, z6, t) (ż5)

−sign(vx) 7→ 1
20 ż6 = −αz36 + βz6 + f(z12, z5, t) (ż6)

sign(vy) 7→ 1
20 ż7 = −αz37 + βz7 + f(z9, z8, t) (ż7)

−sign(vy) 7→ 1
20 ż8 = −αz38 + βz8 + f(z10, z7, t) (ż8)

4. Collision Detection, where the extent of the board is defined by its height (h) and its width 437

(w), px and py are the paddle’s horizontal position and vertical position respectively, and ϵ 438

and σ define the sensitivity/resolution of the collision detector relative to the ball’s distance 439

to the walls/paddle. 440

Top Collision [0, 1] 7→ 1
1000 ż9 =− (z9)

3 + (z4 + (h− ϵ))z10 (ż9)

Bottom Collision [0, 1] 7→ 1
1000 ż10 =− (z10)

3 − (z4 + (−h− ϵ))z10 (ż10)

Left Collision [0, 1] 7→ 1
1000 ż11 =− (z11)

3 − (z3 + (−w − ϵ))z10 (ż11)

Right/Paddle Collision [0, 1] 7→ 1
2000 ż12 =− (z12)

3 + ([(z3 − px)
2 + (z4 − py)

2]− (w − σ))z12
(ż12)

Implementation Level: A Reservoir Computer Analytically Embedding the Dynamical 441

Algorithm 442

In contrast to the traditional task-optimization approach that learns the weights via numerical 443

training in a deep neural network, we constructed a separate class of models, i.e., reservoir computers, 444

by analytically embedding the dynamical algorithm defined above (the twelve differential equations 445

encoding ball motion, wall collision logic, and velocity sign changes) into the reservoir computer’s 446

connectivity weights. We do so by following the method of Kim & Bassett [42]. 447

The basic steps of this method are as follows. 448

1. Start from the standard continuous-time echo-state equation 449

1

γ
ṙ = −r+ tanh(Ar+Bx+ d), (1)

with tanh nonlinearity. We draw B i.i.d. from U [−0.5, 0.5]; A is initially set to for the 450

open-loop solution which will be “programmed” later. (note: there are multiple notational 451

conventions for expressing the time constant of a differential equation: τ ẋ = f(x) or 1
γ ẋ = f(x). 452

Here we use τ = 1
γ , in line with the convention of Kim & Bassett. [42]) 453

2. Solve hidden state as a function of inputs. Because the leakage term linearises Eq. 1 454

around a randomly chosen operating point, r∗, we can solve for our bias term given r∗ 455

d = atanh(r∗) +Bx

and the solution to the echo-state equation can be expressed as a smooth map 456

r(t) = h
(
x, ẋ, ẍ, . . .

)
. (2)

14/31

3. Symbolic expansion. Expand Eq. 2 to kth order via a multivariate Taylor series, obtaining 457

a “design matrix” 458

R = Tk

[
h
]
∈ RN×k. (3)

Each column is a monomial basis function of the inputs, their time derivatives, and the 459

multivariate interaction terms up to order k. 460

4. Program the desired vector field. Let O ∈ Rm×k hold the same monomials but evaluated 461

on the target dynamics ż = f(z). Compile the programmed readout 462

W = argmin
W

∥WR−O∥F , (4)

where ∥ · ∥F denotes the Frobenius/L2 norm. This yields WR ≃ O and hence 463

W
(
r+ 1

τ ṙ
)

≈ z+ 1
τ f(z). (5)

5. Load initial conditions. Inject a given trial’s starting state (z0, ż0) through the input 464

channel to set the reservoir at its conditional operating point, r∗i : 465

r∗i = tanh
(
Bz0 + d

)
. (6)

This latent vector, z0, contains the displacement of r∗ in our N -dimensional space such that 466

the networks time evolution from this point indexes a unique board configuration (initial 467

condition for our update equation) (ball position & velocity). 468

6. Close the loop. Split Bx into a recurrent part B̂x̂ and an exogenous part B̄x̄, then substitute 469

x̂ = Wr: 470

1

γ
ṙ = −r+ tanh

(
(B̂W)r+ B̄x̄+ d

)
. (7)

This yields the effective adjacency A⋆ = B̂W . With the loop closed, we numerically integrate 471

Eq. 7 (Runge–Kutta 45) from r∗i to simulate the board dynamics; the observable state can be 472

optionally read out via Wr(t). 473

Full derivations and hyperparameter choices appear in Supplementary Material “Details of 474

Programming Reservoir Computer”. 475

Applying dSPM to Experimental Conditions 476

Once we have our programmed reservoir computer, we can “load in” the initial conditions and evolve 477

our network over time. As the reservoir evolves its distributed computation, across the N hidden 478

units, together computes the dynamical algorithm that constitute our physics-based representation 479

of the gameboard. 480

We initialize dSPM with the initial conditions used within the monkey experiments. The initial 481

conditions contain ball position and velocity for each trial, which dSPM evolves autonomously 482

without external inputs for the duration of the given Pong condition. 483

Traditional Task-Optimized Deep Neural Networks 484

Rajalingham et al. [26] trained a large ensemble of standard machine-learning-style RNNs on the 485

same interception task, using supervised learning protocols. These networks — here referred to as 486

“task-optimized RNNs” — took the ball’s visual inputs and were optimized to predict and/or control 487

the paddle’s position in order to intercept the ball. 488

The next time-point models were trained to predict both the ball position in the next time step 489

and to control the paddle (where the paddle should be for successful ball-interception at the end 490

15/31

of the trial). They considered different variants of the next time-point models depending on the 491

specifics of the loss and architecture, which we pool together as they did not differ from each other 492

statistically. The paddle-only models were trained only the latter objective — the ball endpoint. 493

They considered different hyperparameter choices [e.g., number of units, RNN circuit type (GRU, 494

LSTM), input representation, etc.]. Here we report the best performing variants (number of hidden 495

units=40; RNN circuit type=LSTM or GRU, input representation=motion filters; pixel input or 496

Gabor-filtered input). We used these task-optimized RNNs “as is”, extracting their hidden states 497

on each condition for comparison with DMFC recordings and dSPM. 498

Stimuli and Neural Data 499

Two adult macaque monkeys (Macaca mulatta), one male (Monkey P) and one female (Monkey M), 500

participated in this study. Animals performed a naturalistic ball interception task developed by 501

Rajalignham et al. [26, 27]. In this task, each trial began with the ball in a random initial position 502

and velocity in a two-dimensional arena. The ball traveled rightward at a constant speed, with zero 503

or one bounce off the horizontal walls. Crucially, the ball was rendered only for the early portion of 504

each trial; its trajectory then became occluded by a virtual “occluder” before reaching the far right 505

side. The monkeys controlled a paddle positioned at the right edge via a one-degree-of-freedom 506

joystick, attempting to intercept the ball upon its (unseen) arrival. Each trial ended when the ball 507

either made contact with the paddle or exited the right boundary of the display. Inter-trial intervals 508

were 750 milliseconds. Monkeys were rewarded with a juice drop when they successfully intercepted 509

the ball. They were free to move their eyes during the occluded period and routinely shifted gaze in 510

ways consistent with anticipating future ball positions. 511

Neural signals were recorded from DMFC using high-channel-count silicon probes (Neuropixels) 512

in one animal (Monkey M) and linear probes (Plexon V-probes) in the other (Monkey P). Recording 513

sites spanned an 8 mm × 3 mm grid in Monkey P (24 distinct locations, each sampled in two 514

sessions) and a narrower grid in Monkey M (6 locations, each sampled in one session). Neurons were 515

neither preselected nor excluded based on their response properties, and recording sites were not 516

chosen based on putative task selectivity. Spikes were sorted with an automated algorithm (Kilosort 517

3.0) and subjected to quality checks that removed unstable or noisy units. Per-trial, per-neuron 518

spike counts were binned in 50-milliseconds intervals. Only units with significant split-half reliability 519

(p < 0.01) were retained, resulting in a final dataset of 1,889 reliably recorded neurons across both 520

monkeys. Trials were organized into 79 unique stimulus conditions. 521

Neural Data Analysis and Model-Data Comparisons 522

Trajectory Decoding from State Vectors 523

To test the future decoding capabilities of latent state representations of DMFC and different models, 524

we used generalized linear model (GLM) [46] fits to decode the positions of the ball from the latent 525

state-vectors across time. Neural population responses, task-optimized RNN hidden states, and 526

dSPM reservoir computer states were all compared via two complementary analyses: ball endpoint 527

decoding (Fig. 2) and full trajectory decoding (Fig. 2). All GLM results reported are cross-validated 528

using nested 5-fold cross-validation with 4-fold inner cross-validation for hyperparameter selection. 529

For ball endpoint decoding, we regressed each population’s activity at each time point onto the 530

ball’s actual position at the time it would leave the board (where it would be intercepted by the 531

paddle). For full trajectory decoding, we regressed each population’s activity at 250 milliseconds 532

onto the ball’s actual position along its trajectory (including endpoint). The x-axis in Fig. 2E 533

represents time relative to paddle interception (0 ms). Since trials varied in duration due to different 534

ball velocities and starting positions (ranging from 29 to 77 time bins at 50 ms resolution), we aligned 535

all trials to their endpoints. To maximize the amount of training/testing data available across all 536

trials, we could only decode positions going back 1450 ms from interception—corresponding to the 537

duration of the shortest trial (29 time bins × 50 ms). This ensures that neural data from the 250 538

16/31

ms time point could be used to decode ball positions at all time points shown for every trial in our 539

dataset. 540

Representational Similarity Analysis 541

Representational similarity analysis (RSA) evaluated the geometry of each latent space by computing
pairwise Euclidean distances among the (79 conditions x 71 time bins), creating representational
dissimilarity matrices (RDMs) for each model and the neural data. We then computed Spearman
correlations between model and neural RDMs to assess representational similarity. To determine
whether dSPM captured unique variance in neural representations beyond task-optimized models
and heuristics, we employed a residualization procedure. For each model type, we regressed out the
contribution of alternative models from both the neural and model (upper triangular, flattened)
dissimilarity matrices using ordinary least squares:

residual = target−X(XTX)−1XT target

where XTX contains the regressor dissimilarity matrix. Residualization was performed as the 542

following: We randomly sampled a single model instance from the source model class as the regressor, 543

repeated across all model instances to account for sampling variability. This procedure was applied 544

bidirectionally, residualizing dSPM models from task-optimized models and vice versa. In Fig. 545

3D, because the linear map heuristic has no variability (as it is based on the ground truth), our 546

method carries over the variability due to dSPM instances for statistical quantification. We report 547

approach all possible residualization pairings in Supplementary Fig. 7. Statistical significance 548

was determined using parametric pairwise comparisons between residualized correlation values 549

(paired samples two-tailed t-test). [Notice that we have equal number (24) of dSPM instances and 550

task-optimized RNNs.] The asymmetric pattern of residualization results — where dSPM maintained 551

high correlation with neural data after removing task-optimized and linear heuristic’s variance, but 552

not vice versa—indicates that dSPM capture fundamental aspects of neural computation not present 553

in the alternative models. 554

Computational Implementation 555

All analyses were performed in MATLAB. Where parallelization was beneficial, data splits and model 556

simulations were distributed across a high-performance cluster, with each trial or cross-validation 557

fold assigned to a separate worker. For consistency, the same 79 task conditions were used in both 558

neural and model analyses, and all time-series were binned at 50 ms. Optimal hyperparameters in 559

regression or decoding analyses (e.g., ridge penalty terms) were chosen via nested cross-validation. 560

The final outputs (hidden states, regression weights, decoded trajectories) were stored and evaluated 561

with identical metrics for both neural and model data. 562

Code and Data Availability 563

All methods for data preprocessing, model simulations, and decoding analyses were implemented in 564

MATLAB and will be made available through a public repository. 565

Acknowledgements 566

We are grateful to Mehrdad Jazayeri for discussions about this project and generously sharing neural 567

data. We also thank Damon Clark and Steve Chang for their comments on this work. We are 568

thankful to the Cognitive and Neural Computational Lab at Yale for their feedback throughout 569

this project, and to Yale Center for Research and Computing for maintaining the HPCs utilized by 570

this project (Misha, Milgram). This work was supported by National Science Foundation (under 571

CAREER Award No. BCS-2441520). 572

17/31

References 573

1. Thomas L Griffiths, Nick Chater, Charles Kemp, Amy Perfors, and Joshua B Tenenbaum. 574

Probabilistic models of cognition: exploring representations and inductive biases. Trends 575

Cogn. Sci., 14(8):357–364, August 2010. 576

2. C R Gallistel and Adam Philip King. Memory and the Computational Brain: Why Cognitive 577

Science will Transform Neuroscience. John Wiley & Sons, September 2011. 578

3. Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of 579

physical scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327– 580

18332, 2013. 581

4. Ilker Yildirim, Max H Siegel, Amir A Soltani, Shraman Ray Chaudhuri, and Joshua B 582

Tenenbaum. Perception of 3d shape integrates intuitive physics and analysis-by-synthesis. 583

Nature Human Behaviour, 8(2):320–335, 2024. 584

5. WY Bi, AD Shah, KW Wong, BJ Scholl, and I Yildirim. Computational models reveal that 585

intuitive physics underlies visual processing of soft objects. Nature Communications, in press. 586

6. Thomas L Griffiths, Edward Vul, and Adam N Sanborn. Bridging levels of analysis for 587

probabilistic models of cognition. Curr. Dir. Psychol. Sci., 21(4):263–268, August 2012. 588

7. David Marr. Vision: A computational approach, 1982. 589

8. Rüdiger Wehner. ‘matched filters’—neural models of the external world. Journal of comparative 590

physiology A, 161(4):511–531, 1987. 591

9. Donald D Hoffman. The interface theory of perception. Stevens’ handbook of experimental 592

psychology and cognitive neuroscience, 2:1–24, 2018. 593

10. Robert Geirhos, Jörn Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, 594

Matthias Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. Nature 595

Machine Intelligence 2020 2:11, 2(11):665–673, 11 2020. 596

11. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian 597

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. 2nd International 598

Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings, 12 2013. 599

12. Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, 600

Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, 601

Colleen J Gillon, Danijar Hafner, Adam Kepecs, Nikolaus Kriegeskorte, Peter Latham, 602

Grace W Lindsay, Kenneth D Miller, Richard Naud, Christopher C Pack, Panayiota Poirazi, 603

Pieter Roelfsema, João Sacramento, Andrew Saxe, Benjamin Scellier, Anna C Schapiro, Walter 604

Senn, Greg Wayne, Daniel Yamins, Friedemann Zenke, Joel Zylberberg, Denis Therien, and 605

Konrad P Kording. A deep learning framework for neuroscience. Nat. Neurosci., 22(11):1761– 606

1770, November 2019. 607

13. Li Ji-An, Marcus K Benna, and Marcelo G Mattar. Discovering cognitive strategies with tiny 608

recurrent neural networks. Nature, pages 1–9, 2025. 609

14. David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in 610

high-dimensional recurrent neural networks. Neural Comput., 25(3):626–649, March 2013. 611

15. R Shepard and S Chipman. Second-order isomorphism of internal representations: Shapes of 612

states . Cognitive Psychology, 1:1–17, 1970. 613

18/31

16. Christian K Machens, Ranulfo Romo, and Carlos D Brody. Flexible control of mutual 614

inhibition: a neural model of two-interval discrimination. Science, 307(5712):1121–1124, 615

February 2005. 616

17. Manthan Khona and Ila R Fiete. Attractor and integrator networks in the brain. Nature 617

Reviews Neuroscience, 23:744–766, 2022. 618

18. Jimmy Smith, Scott Linderman, and David Sussillo. Reverse engineering recurrent neural 619

networks with jacobian switching linear dynamical systems. In M Ranzato, A Beygelzimer, 620

Y Dauphin, P S Liang, and J Wortman Vaughan, editors, Advances in Neural Information 621

Processing Systems, volume 34, pages 16700–16713. Curran Associates, Inc., 2021. 622

19. Victor Geadah, International Brain Laboratory, and Jonathan W Pillow. Parsing neural 623

dynamics with infinite recurrent switching linear dynamical systems. Int Conf Learn Represent, 624

2024. 625

20. Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks- 626

with an erratum note. Bonn, Germany: German national research center for information 627

technology gmd technical report, 148(34):13, 2001. 628

21. Rishi Rajalingham, Hansem Sohn, and Mehrdad Jazayeri. Dynamic tracking of objects in the 629

macaque dorsomedial frontal cortex. Nat. Commun., 16(1):346, January 2025. 630

22. Jason Z Kim and Dani S Bassett. A neural programming language for the reservoir computer. 631

arXiv [cond-mat.dis-nn], March 2022. 632

23. Rishi Rajalingham, Aı́da Piccato, and Mehrdad Jazayeri. Recurrent neural networks with 633

explicit representation of dynamic latent variables can mimic behavioral patterns in a physical 634

inference task. Nat. Commun., 13(1):5865, October 2022. 635

24. Pierre Pouget, Erik E. Emeric, Veit Stuphorn, Kate Reis, and Jeffrey D. Schall. Chronometry 636

of visual responses in frontal eye field, supplementary eye field, and anterior cingulate cortex. 637

Journal of Neurophysiology, 94(3):2086–2092, 9 2005. 638

25. Hamed Nili, Cai Wingfield, Alexander Walther, Li Su, William Marslen-Wilson, and Niko- 639

laus Kriegeskorte. A toolbox for representational similarity analysis. PLoS Comput. Biol., 640

10(4):e1003553, 2014. 641

26. Rishi Rajalingham, A Piccato, and Mehrdad Jazayeri. Recurrent neural networks with 642

explicit representation of dynamic latent variables can mimic behavioral patterns in a physical 643

inference task. Nature Communications, 13:1–15, 2022. 644

27. Rishi Rajalingham, Hansem Sohn, and Mehrdad Jazayeri. Dynamic tracking of objects in the 645

macaque dorsomedial frontal cortex. Nature Communications, 16:346, 2025. 646

28. C. R. Gallistel and Adam Philip King. Memory and the Computational Brain. 2009. 647

29. Peter W. Battaglia, Jessica B. Hamrick, and Joshua B. Tenenbaum. Simulation as an engine 648

of physical scene understanding. Proceedings of the National Academy of Sciences of the 649

United States of America, 110(45):18327–18332, 11 2013. 650

30. Kelsey R Allen, Kevin A Smith, and Joshua B Tenenbaum. Rapid trial-and-error learning 651

with simulation supports flexible tool use and physical reasoning. Proceedings of the National 652

Academy of Sciences, 117(47):29302–29310, 2020. 653

31. Tomer D Ullman, Andreas Stuhlmüller, Noah D Goodman, and Joshua B Tenenbaum. 654

Learning physical parameters from dynamic scenes. Cognitive psychology, 104:57–82, 2018. 655

19/31

32. Pedro A Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero, Thomas Pouncy, 656

Samuel J Gershman, and Joshua B Tenenbaum. Human-level reinforcement learning through 657

theory-based modeling, exploration, and planning. arXiv preprint arXiv:2107.12544, 2021. 658

33. Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building 659

machines that learn and think like people. Behavioral and brain sciences, 40:e253, 2017. 660

34. Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh Tenenbaum, and 661

Tomer Ullman. Modeling expectation violation in intuitive physics with coarse probabilistic 662

object representations. Adv. Neural Inf. Process. Syst., 32, 2019. 663

35. Shreya Saxena and John P Cunningham. Towards the neural population doctrine. Current 664

Opinion in Neurobiology, 55:103–111, 2019. 665

36. Naama Brenner, William Bialek, and Rob de Ruyter van Steveninck. Adaptive rescaling 666

maximizes information transmission. Neuron, 26(3):695–702, 2000. 667

37. Rishidev Chaudhuri, Berk Gerçek, Biraj Pandey, Adrien Peyrache, and Ila Fiete. The intrinsic 668

attractor manifold and population dynamics of a canonical cognitive circuit across waking 669

and sleep. Nature Neuroscience, 22:1512–1520, 2019. 670

38. Sung Soo Kim, Hervé Rouault, Shaul Druckmann, and Vivek Jayaraman. Ring attractor 671

dynamics in the Drosophila central brain. Science, 356(6340):849–853, 2017. 672

39. J J Hopfield. Neural networks and physical systems with emergent collective computational 673

abilities. Proc. Natl. Acad. Sci. U. S. A., 79(8):2554–2558, April 1982. 674

40. J J Hopfield and D W Tank. Computing with neural circuits: a model. Science, 233(4764):625– 675

633, August 1986. 676

41. Vishwa Goudar and Dean V Buonomano. Encoding sensory and motor patterns as time- 677

invariant trajectories in recurrent neural networks. Elife, 7:e31134, March 2018. 678

42. Jason Z. Kim and Dani S. Bassett. A neural machine code and programming framework for 679

the reservoir computer. Nature Machine Intelligence, 5(6), 2023. 680

43. David Sussillo and Larry F Abbott. Generating coherent patterns of activity from chaotic 681

neural networks. Neuron, 63(4):544–557, 2009. 682

44. Steven Strogatz, Mark Friedman, A John Mallinckrodt, and Susan McKay. Nonlinear dynamics 683

and chaos: With applications to physics, biology, chemistry, and engineering. Comput. Phys. 684

Commun., 8(5):532, 1994. 685

45. Subhodh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation 686

through neural population dynamics. Annual Review of Neuroscience, 43:249–275, 2020. 687

46. Joshua I. Glaser, Ari S. Benjamin, Raeed H. Chowdhury, Matthew G. Perich, Lee E. Miller, 688

and Konrad P. Kording. Machine Learning for Neural Decoding. eNeuro, 7(4):0506–19, 7 689

2020. 690

47. Mehrdad Jazayeri and Arash Afraz. Navigating the neural space in search of the neural code. 691

Neuron, 93(5):1003–1014, 2017. 692

48. Steven P. Wise, Driss Boussaoud, Paul B. Johnson, and Roberto Caminiti. Premotor and 693

parietal cortex: Corticocortical connectivity and combinatorial computations. Annual Review 694

of Neuroscience, 20:25–42, 1997. 695

49. Seng Bum Michael Yoo, Jiaxin Cindy Tu, Steven T Piantadosi, and Benjamin Yost Hayden. 696

The neural basis of predictive pursuit. Nature neuroscience, 23(2):252–259, 2020. 697

20/31

50. Shigeru Obayashi, Tetsuya Suhara, Koichi Kawabe, Takashi Okauchi, Jun Maeda, Yoshihide 698

Akine, Hirotaka Onoe, and Atsushi Iriki. Functional Brain Mapping of Monkey Tool Use. 699

NeuroImage, 14(4):853–861, 10 2001. 700

51. Aran Nayebi, Rishi Rajalingham, Mehrdad Jazayeri, and Guangyu Robert Yang. Neural 701

Foundations of Mental Simulation: Future Prediction of Latent Representations on Dynamic 702

Scenes. Advances in Neural Information Processing Systems, 36:70548–70561, 12 2023. 703

52. Hamed Nili, Cai Wingfield, Alexander Walther, Li Su, William Marslen-Wilson, and Nikolaus 704

Kriegeskorte. A Toolbox for Representational Similarity Analysis. PLOS Computational 705

Biology, 10(4):e1003553, 2014. 706

53. Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to 707

grow a mind: Statistics, structure, and abstraction. science, 331(6022):1279–1285, 2011. 708

54. Máté Lengyel. Marr’s three levels of analysis are useful as a framework for neuroscience. The 709

Journal of Physiology, 602(9):1911–1914, 5 2024. 710

55. John P. Cunningham and Byron M. Yu. Dimensionality reduction for large-scale neural 711

recordings. Nature Neuroscience, 17(11):1500–1509, 10 2014. 712

56. Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as inverse 713

planning. Cognition, 113(3):329–349, December 2009. 714

57. Russell A Epstein, Eva Zita Patai, Joshua B Julian, and Hugo J Spiers. The cognitive map in 715

humans: spatial navigation and beyond. Nat. Neurosci., 20(11):1504–1513, October 2017. 716

58. V Bush, F D Gage, and H R Stewart. A continuous integraph. J. Franklin Inst., 203(1):63–84, 717

January 1927. 718

59. Tiago Branco and Peter Redgrave. The neural basis of escape behavior in vertebrates. Annual 719

review of neuroscience, 43(1):417–439, 2020. 720

60. Federico Claudi, Dario Campagner, and Tiago Branco. Innate heuristics and fast learning 721

support escape route selection in mice. Current Biology, 32(13):2980–2987, 2022. 722

61. Elizabeth S Spelke. Précis of what babies know. Behavioral and Brain Sciences, 47:e120, 723

2024. 724

62. Steven H. Strogatz. NONLINEAR DYNAMICS AND CHAOS: With Applications to Physics, 725

Biology, Chemistry, and Engineering. Nonlinear Dynamics and Chaos: With Applications to 726

Physics, Biology, Chemistry, and Engineering, pages 1–513, 1 2018. 727

63. Ken Caluwaerts, Francis Wyffels, Sander Dieleman, and Benjamin Schrauwen. The spectral 728

radius remains a valid indicator of the Echo state property for large reservoirs. Proceedings of 729

the International Joint Conference on Neural Networks, 2013. 730

21/31

Supplementary Material 731

Details of Programming Reservoir Computer 732

In brief, the framework for programming the weights and connectivity of a reservoir computer [42] 733

is as follows: 734

1. Define the Network Update Equation 735

Here, we define our to-be-programmed Reservoir Computer via the update equation, describing how 736

each latent unit evolves in time, as 737

1

γ
˙⃗r(t) = −r⃗(t) + tanh(Ar⃗(t) +Bx⃗(t) + d⃗) (1)

where, given a reservoir with N neurons, M inputs, and P outputs 738

1. γ ∈ R1 is the continuous time/rate constant 739

2. r⃗(t) ∈ RN×1 (state vector) describes the value of each neuron within the network at time t 740

3. x⃗(t) ∈ RM×1 are the inputs to the reservoir at time t 741

4. A ∈ RN×N , is the adjacency matrix describing the connectivity of the reservoir units. 742

5. B ∈ RN×M , is the “read-in” matrix describing the exogenous connectivity into the reservoir. 743

6. d⃗ ∈ RN×1, is the constant bias vector for each unit in the reservoir. 744

2. Initialize and Solve this Differential Equation 745

We solve our update equation, which is a differential equation, at a randomly chosen operating 746

point, r∗ ∼ U , where U(−0.5, 0.5) is a uniform distribution between [−0.5,+0.5]. This yields an 747

approximation of the state vector, r⃗(t), as a function of its symbolic inputs and the time derivative(s) 748

of these inputs, yielding 749

r⃗(t) ≈ h(x⃗, ˙⃗x, ¨⃗x, . . .) (2)

3. Decompile into Dynamical Primitives 750

Once solved at a given operating point, and for a randomly initialized set of connection weights 751

(A,B) ∼ U(−0.5, 0.5) and biases d⃗ = tanh−1(r∗) − Ar∗, we can use an integral expansion to 752

decompile the reservoir into a set of expansion bases, R ∈ RN×K , and a symbolic set of inputs, 753

x⃗sym ∈ RK×1, where h(x⃗, ˙⃗x, ¨⃗x, . . .) 7→ Rx⃗sym. Here we use a multivariate Maclaurin series expansion, 754

Mk[h(x⃗, ˙⃗x)], where k is the order of the expansion, defined as 755

Mk[h(v⃗)] =

k∑
m=0

1

m!

2n∑
i1,i2,...,im=1

∂mh

∂vi1∂vi2 · · · ∂vim

∣∣∣∣⃗
0

vi1vi2 · · · vim (3)

where v⃗ = [x⃗, ˙⃗x]T ∈ R2M concatenates position and velocity terms of our input space: 756

• x⃗ =
[
x1 x2 x3

]T
, ˙⃗x =

[
ẋ1 ẋ2 ẋ3

]T
757

• v⃗ =
[
x1 x2 x3 ẋ1 ẋ2 ẋ3

]T
758

22/31

This method yields a set of weights, corresponding to combinatorial/multivariate polynomial 759

coefficients of our symbolic inputs. For example, if we have M = 3 inputs to our network, take 760

information up to the first time derivative of our inputs, and want expansion up to order k = 3, 761

then: 762

M3[h(v⃗)] = h(⃗0, 0⃗) +

6∑
i=1

∂h

∂vi

∣∣∣∣⃗
0

(vi) +
1

2!

6∑
i,j=1

∂2h

∂vi∂vj

∣∣∣∣⃗
0

(vivj)

+
1

3!

6∑
i,j,k=1

∂3h

∂vi∂vj∂vk

∣∣∣∣⃗
0

(vivjvk)

=
[
h(⃗0, 0⃗) , Jh|⃗0 , Hh|⃗0 , Ti,j,kh|⃗0

]
×


1

(x1, x2, x3, ẋ1, ẋ2, ẋ3)
(x1x2, x1x3, x1ẋ1 . . . , x

2
2, x

2
3)

...


= Rx⃗sym (4)

Where (Jh|⃗0, Hh|⃗0, Ti,j,kh|⃗0) are the Jacobian, Hessian, and third-order terms of our expansion, 763

respectively, and the basis vector x⃗sym contains all monomials up to degree 3 in the components of 764

v⃗; R contains the corresponding coefficients from the Jacobian, Hessian, and third-order derivative 765

tensor evaluated at v⃗ = 0⃗. 766

4. Define Dynamical Variables 767

We next define a set of dynamical variables z⃗(t) ∈ RP×1 that encode the desired physics-based 768

representation. Each dynamical variable zi is governed by a differential equation of the form: 769

żi = fi(z⃗, t) (5)

where fi defines the dynamics for the i-th variable. These equations can include: 770

• Constant registers: Variables with żi = 0 that maintain initial conditions throughout the 771

simulation 772

• Linear dynamics: Variables following żi = αzi + βzj + . . . 773

• Nonlinear dynamics: Variables with polynomial or other nonlinear terms, e.g., żi = αzi−βz3i 774

• Coupled dynamics: Variables whose evolution depends on multiple other variables through 775

complex interaction terms 776

5. Compile The Resulting Dynamical Algorithm 777

Given our dynamical algorithm (i.e., the 12 dynamical variables ˙⃗z = f(z⃗)), we create a target 778

observation matrix O ∈ RP×K by evaluating the same monomial basis functions used in our 779

expansion on the target dynamics: 780

O = Mk[f(z⃗)] (6)

This yields a matrix where each row corresponds to a dynamical variable expressed in the same 781

basis as our reservoir expansion. 782

23/31

6. Program the Readout Matrix 783

We solve for the optimal readout matrix W ∈ RP×N that maps the reservoir state to our dynamical 784

algorithm: 785

W ∗ = argmin
W

∥WR−O∥2F (7)

where ∥ · ∥F denotes the Frobenius norm. This least-squares problem has the closed-form solution: 786

W ∗ = OR† (8)

where R† is the Moore-Penrose pseudoinverse of R. 787

7. Close the Loop 788

Finally, we close the loop by partitioning the input matrix B into recurrent and exogenous compo- 789

nents: 790

Bx⃗ = B̂ ˆ⃗x+ B̄ ¯⃗x (9)

where ˆ⃗x = Wr⃗ represents the recurrent feedback and ¯⃗x represents any external inputs. This yields 791

the programmed reservoir computer: 792

1

γ
˙⃗r(t) = −r⃗(t) + tanh(A∗r⃗(t) + B̄ ¯⃗x(t) + d⃗) (10)

where A∗ = B̂W is the effective connectivity matrix encoding our dynamical algorithm. 793

This framework enables the analytical embedding of arbitrary dynamical systems into reser- 794

voir computer, transforming differential equations into distributed connectivity patterns that au- 795

tonomously execute the desired computations. The reader can consult ref. [42] for further details. 796

8. Initialize and Simulate 797

To simulate a specific instance of a Pong condition: 798

1. Set initial conditions z⃗0 through the input channel and evolve the network from the global 799

operating point until convergence (r∗i (t) − r∗i (t − 1) < ϵ). This establishes the conditional 800

operating point corresponding to a particular Pong condition: 801

r⃗∗i = tanh(Bz⃗0 + d⃗) (11)

2. Numerically integrate the programmed reservoir computer equation from r⃗∗i using standard 802

ODE solvers (e.g., Runge-Kutta methods) 803

1

γ
ṙ = −r + tanh(Ar +Bx+ d) (12)

where we begin at r = r∗i to simulate a Pong condition with the programmed adjacency 804

A = A∗ = B̂W . 805

3. Read out the observable state through the programmed readout: z⃗(t) = Wr⃗(t) 806

24/31

Pseudo-Code of the Board Simulation 807

Supplementary Figure 1. Pseudocode of the physics-based representation of the
gameboard, which underlies our dSPM construction. This figure presents an intuitive
pseudocode representation to illustrate how the 12 coupled differential equations (Equations (ż1)
through (ż12)) described in the Methods. (A) An object-oriented programming constructor of the
board state, showing how initial conditions map to the initial (x, y) position of the ball within the
game board and the constant velocity registers (z1,z2 from equations ż1,ż2 in Methods) and initialize
the hysteretic state variables. (B) Main loop for unfolding the board dynamics. (C) Pseudocode
modules corresponding to the computational blocks 2-4 of the Methods section: Collision Detection
(yellow) represents the dynamics of z9-z12 (Equations (ż9)-(ż12) in Methods), which implement
threshold-based collision detection; Non-linear Velocity Flip (blue) illustrates the hysteretic NAND
gate dynamics of z5-z8 (Equations (ż5)-(ż8) in Methods) that maintain velocity sign memory through
bistable attractors; Linear Position Update (purple) shows how z3 and z4 (Equations (ż3) and (ż4)
in Mehtods) integrate velocity to update position. These functions make recurrent calls to each
other. In dSPM, this physics-based representation is analytically embedded into the connectivity
matrix of a reservoir computer, A = B̂W .

25/31

Supplementary Figure 2. Example dynamical primitives for implementing symbolic representa-
tions. (A) Left two panels show the phase portraits of a controlled bifurcation with the equation
1
τ ẋ = g(t)x− ax3. The stable fixed point (attractor; filled circle) on the left transitions into two
stable fixed points and one unstable fixed points (repeller; unfilled circle) as g(t) becomes positive.
We use this type of bifurcation for collision detection in our gameboard representation. Middle
two panels show the same type of bifurcation but this time with its constant term time-varying,
1
τ ẋ = bx− ax3 + f(t). The stable and unstable fixed points non-linearly transition as a function
of the time-varying constant term f(t). In our gameboard representation, we use this type of
bifurcation for the velocity sign variable. Through these time varying coefficients (e.g., g(t) and
f(t)), we can couple different dynamical variables and implement branching logic, linear velocity
dynamics, and other elements needed to represent the physical scenes and other structure-preserving
representations. The rightmost panel shows how the sensitivity of these dynamical primitives can be
changed by adjusting the value of τ . This rightmost panel is plotting the second plot from left (i.e.,
1
τ ẋ = g(t)x− ax3 for g(t) > 0) with different values of the time constant. (B) The full dynamical
algorithm, consisting of the 12 dynamical variables, as described in Methods.

26/31

Supplementary Figure 3. Animated visualization of the dSPM dynamical algorithm and
reservoir state evolution (1000 units) implementing non-linear wall collision detection
and resolution. Left panel: Phase portraits of the collision circuit’s recurrent dynamics, showing
the theoretical nullclines (continuous curves) programmed via the polynomial-shift operators and
pitchfork bifurcations described in Methods (equations ż7-ż8, and ż9, which recurrently couple
to z2 the symbolic representation of the y-position of the ball). The points represent the actual
instantaneous values of these dynamical variables as read out from the network state via Wr(t).
The blue and red curves show the hysteretic switch’s pair-dynamics (ż7 and ż8 for vertical velocity),
implementing bistable memory. The yellow curve represents the collision detector, which transitions
between stable zero and non-zero fixed points when the ball approaches the boundary. The cross-
coupling between collision detection and velocity sign variables implements the NAND gate logic
triggering velocity reversal upon collision. Top right panel: Real-time ball trajectory on the board,
computed from the linear position update equations (ż3, ż4) that integrate the velocity components
stored in the hysteretic switches. The red trace shows the ball’s path. The wall collision triggers
a transition in the dynamical landscape (left panel), flipping the appropriate velocity component
while maintaining the orthogonal component unchanged. Bottom right panel: High-dimensional
hidden state of PAN showing all N = 1000 neuron activations r(t) ∈ RN at each time point.
The color gradient (from dark blue to light cyan) encodes individual neuron activities. Despite
this high-dimensional embedding, the network autonomously constrains its dynamics to the 12-
dimensional manifold specified by the programmed differential equations. The L2-norm solution
that creates the programmed adjacency (A = B̂W) during the compilation step, distributes the
low-rank symbolic/dynamical representations heterogeneously across the population-rank of the
network. The relatively uniform distribution of activities indicates that the network utilizes its
full representational capacity rather than sparse coding, consistent with such a L2-norm based
analytical encoding. (NOTE: To play the animation within the PDF, please use Adobe Acrobat.
This animation is also included as a Supplementary Video.)

27/31

Stability of Latent Manifolds Based on dSPM’s Reservoir Computer Size 808

Supplementary Figure 4. Stability analysis of dSPM with varying numbers of hidden
units. (A) Projection error visualization in networks after trial start, showing example trajectories
from dSPM reservoir computer with 300 (yellow), 500 (red), and 1000 (blue) hidden units. The
main panel displays ball trajectories overlaid on the board, with cyan dots indicating the actual ball
trajectory. Two types of errors emerge: angular velocity errors (θ,ϕ) and velocity magnitude errors
(trajectories going farther/faster than ground truth in the same amount of time). Insets (i-iii) show
zoomed views of critical trajectory segments where non-linear instabilities manifest around the latent
collision detector manifold, visible in the under-parameterized 300 and 500 unit networks’ trajectories.
(B) Root Mean Square Error (RMSE) quantification as a function of dSPM size during the initial
trial phase, averaged across 50 models and 79 conditions per model size. Short time horizon (7
ms; top panel) reveals exponential divergence from initial conditions, with error growth inversely
proportional to network size. The 300-unit network (unstable) shows rapid divergence, while the
1000-unit network remains stable. Longer time horizon (500 ms; bottom panel) demonstrates the
representational consequences of rank deficiency, where off-manifold instabilities in smaller networks
lead to recurrent propagation of trajectory errors. The 1000-unit network maintains near-zero RMSE
throughout, indicating sufficient expressivity to stably embed the 12-dimensional dynamical manifold,
while the 300 and 500-unit networks exhibit persistent drift from the programmed dynamics.

28/31

Supplementary Figure 5. Effect of trajectory complexity on rapid (at 250 milliseconds) ball
endpoint prediction. DMFC populations show highly accurate ball endpoint prediction for both
within zero-bounce and within one-bounce trials, with slightly better performance on the less
complex zero-bounce trials. dSPM recapitulates DMFC-like robust prediction for both condition
types. Task-optimized RNNs show generally poor performance, whereas the Linear Map also recovers
DMFC-like pattern.

29/31

Divergence of the Linear Map Heuristic from dSPM and DMFC 809

Supplementary Figure 6. Heuristic strategies versus dynamical computation in DMFC.
(A) To distinguish between the Linear Map heuristic and dSPM’s nonlinear dynamical attractors,
we leveraged a critical difference in their predictions. A linear mapping from the ball’s current
position and velocity to its final position represents a simple heuristic solution to the interception
task — one that does not require simulation of intermediate dynamics and that is accurate due to
the simplicity of the board (linear or piecewise linear trajectories across 0-bounce and 1-bounce
conditions). Decoders trained on 0-bounce conditions and tested on 1-bounce conditions (and vice
versa) reveal fundamentally different computational strategies between the Linear Map versus dSPM
and DMFC. All of these decoders are trained on a given time point (along the x-axis) to predict
the ball endpoint. The Linear Map heuristic from ground truth (x, y,∆x,∆y) (yellow) maintains
high decoding generalization (∼ 0.8 correlation) throughout the trial.In contrast, both neural data
(red) and dSPM (cyan) show poor initial generalization that worsens over time, with correlation
dropping below 0.2 within 500 ms. We also note an important difference between dSPM and DMFC:
In dSPM, the decoder’s generalization performance improves quickly past 500 ms, whereas in DMFC
it either stays flat or improves very gradually. Together, these results demonstrate that despite the
availability of a simpler heuristic, DMFC implements trajectory-specific nonlinear dynamics. (B) A
separate, heuristic possibility is that the endpoint decoding is due to some spurious correlations
in the dataset. To rule out this possibility, we train and test ball endpoint decoders with the
condition labels randomly shuffled. When trial labels are randomly shuffled, all three decoders
fail (correlations near zero), confirming that successful decoding is not due to spurious correlations
throughout our analysis. Error bands represent SEM.

30/31

Supplementary Figure 7. The full set of RSA residualization results. The dSPM model explains
more variance than other models and most of this variance is orthogonal to what other models
can explain. The reverse is not true: dSPM, for the most part, subsumes what can be explained
by the task-optimized RNNs and the task-performant linear map heuristic. (For the paddle-only
model, because it’s essentially uncorrlated from neural data, our partial regression analysis “pumps
in information”, leading to the counterintuitive pattern of increased variance after residualization.)

31/31

	anm0:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

