Hypothesis-Driven Identification of Neural Algorithms With
Dynamical Structure-Preserving Manifolds

Daniel Calbick"?*, Jason Z. Kim?, Hansem Sohn*?, Tlker Yildirim! 278"

1 Interdepartmental Neuroscience Program, Yale University

2 Wu Tsai Institute, Yale University

3 Department of Physics, Cornell University

4 Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon,
Republic of Korea

5 Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon,
Republic of Korea

6 Department of Psychology, Yale University

7 Department of Statistics & Data Science, Yale University

8 Foundations of Data Science Institute, Yale University

* daniel.calbick@yale.edu, ilker.yildirim@yale.edu

Abstract

Neuroscience aims to uncover the algorithms by which the brain builds and manipulates complex in-
ternal representations of objects, agents, and places. Existing reverse-engineering frameworks remain
ineffective for identifying these algorithms. Here, we present Dynamical Structure-Preserving Mani-
folds (dSPMs) — a new reverse-engineering framework that unifies symbolic, structure-preserving
abstractions with dynamical systems to enable hypothesis-driven identification of neural algorithms
undergirding mental representations. We use dSPM to identify a physical prediction algorithm in
the dorsomedial frontal cortex (DMFC) of macaques intercepting a ball in a Pong-like gameboard.
dSPM posits that the perceived initial conditions of a scene quickly collapse neural activity onto
a low-dimensional manifold, whose geometry corresponds to a structure-preserving physics-based
representation of the gameboard. dSPM better explains DMFC than alternatives, makes predictions
confirmed in neural data, and suggests prediction occurs not through next-step simulation or task-
performant heuristics, but via the physics-based topological structure of this manifold. dSPM offers
a tool for effectively exploring the computational foundations of biological intelligence.

Introduction

The brain generates rich internal representations of the world around us, enabling predictions about
how objects will move, agents will act, and places will connect. A central challenge of neuroscience is
to uncover the algorithms — i.e., the precise, if possible interpretable, computational transformations
— by which the brain builds and manipulates these complex mental representations.

Two reverse-engineering approaches dominate current work, each focusing on different perspec-
tives of cognition and featuring different advantages and limitations. On one hand, probabilistic
models of cognition specify interpretable hypotheses about mental representations [1], but typically
lack neural grounding. These models suggest that the brain involves structure-preserving represen-
tations of the external data-generating processes [2] — e.g., the physics that govern how objects
move and react to external forces —that in turn support predictions of what will happen next [3-5].
However, these hypotheses are typically formulated as “computational-level” or functional accounts
of the brain [6[7]: i.e., in practice, they are implemented using standard computer software and
high-level programming languages, without identifying an actual algorithm that may realize them
in biological neural circuits. On the other hand, deep neural network (DNN) models fit neural

1B

10

11

12

13

14

data with remarkable precision but obscure the algorithms they learn. DNNs facilitate explorations
of task-optimized statistical representations as accounts of mental representations [8H10], which
can involve “shortcuts” and “simple tricks” that are typically, but not always, performant [10}/11].
Crucially, DNNs offer scientific hypotheses with respect to their architectures, training data, and
training objectives [12|, and not directly with respect to the possible algorithms themselves. Instead,
these “implicit algorithms” need to be “extracted” after the fact using various interpretation tools,
regardless of whether these DNNs are large or small (e.g., [13}/14]).

This landscape of modeling approaches highlights a critical gap: intuitive cognitive theories that
are difficult to map to neurobiology, and powerful fits to neural data that do not allow algorithmic-
level control over hypotheses. A new approach is needed to precisely and interpretably identify
neural algorithms of complex mental representations.

Here, we introduce Dynamical Structure-Preserving Manifolds (dSPM) for hypothesis-driven
identification of neural algorithms and present a case study of physical scene prediction in macaque
frontal circuitry to establish its efficacy. At its core, dSPM unifies two influential but, to this
day, disparate views of the brain: that the brain can be viewed as a symbolic representation
system building and manipulating structure-preserving mappings of the external data-generating
processes [2,/15] (Fig. 1A) and that the brain can be viewed as the evolution of coupled dynamical
systems in population state space |16l[17] (Fig. 1B).

The dSPM framework achieves this synthesis in two stages. First, a symbolic representation
hypothesis (e.g., a program-like specification of objects and their interactions) is captured in a
dynamical algorithm. This dynamical algorithm is a system of coupled ordinary differential equations
with appropriately expressive computational primitives to fully translate variables and functions
in the symbolic representation. Even though dynamical systems offer a common framework for
neuroscience, this framework is most often used to interpret or analyze otherwise high-dimensional
activity (e.g., [18/19]). The dSPM framework’s “top-down” construction of computation through
dynamics, by specifying a dynamical algorithm of complex representations, contrasts with this
traditional approach.

Second, dSPM embeds this dynamical algorithm within a reservoir computer, a biologically
plausible architecture for recurrent, distributed computation [20], by analytically determining the
connectivity (i.e., the adjacency matrix) of the reservoir computer without any training, training
data, or training objectives. The result is a population of interconnected units whose analytically-set
connectivity directs the flow of information to align with the dynamical algorithm of the hypothesized
symbolic representation. Accordingly, dSPM fills the modeling gap mentioned earlier: Unlike task-
optimized DNNs, dSPM’s reservoir computer is a white-box at the algorithm level, and unlike
probabilistic models of cognition, dSPM is falsifiable by neural data, enabling hypothesis-driven
exploration of the neural algorithms of complex mental representations.

To assess the efficacy of dSPM, we apply it to identify an algorithm for physical scene prediction
in macaque frontal circuitry. Rajalingham et al. [21] performed high-throughput single-cell recordings
in the dorsomedial frontal cortex (DMFC) of macaques performing a virtual ball interception task
in a Pong-like gameboard. The researchers occluded the ball’s trajectory partway through the trial,
finding evidence of prediction in the DMFC activity. How does the DMFC population represent
the gameboard, and how does this representation support the prediction of future trajectory? The
dSPM framework enables a new reverse-engineering capability: It allows us to test the possibility of
a physics-based, structure-preserving representation of the gameboard — including positions of the
ball and the walls, velocity, and collision state, as well as interaction rules according to Newtonian
mechanics (as in the cognitive modeling of ref. [3]) — but directly in the high-dimensional neural
activity. We implement dSPM for this domain using a recent methodology from the physics of
dynamical systems [22], which provides a dynamical algorithm of a physics-based representation
of the gameboard as well as a general-purpose analytical method for translating this dynamical
algorithm into the connectivity of a reservoir computer. We evaluate dSPM’s reservoir computer
against the DMFC activity, while making comparisons to powerful alternative models, including a
series of task-optimized recurrent neural networks (whose task performance is previously shown to

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

5!

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

correlate with macaque behavioral outputs in the same task) and a task-performant heuristic
specialized to this ball-interception task.

The dSPM model makes a surprising prediction about the DMFC activity, which we call
“single-state sufficiency for entire trajectory prediction”: The perceived initial conditions of a scene
should rapidly bias the high-dimensional neural state toward a low-dimensional manifold whose
physics-based topological structure deterministically encodes future trajectory information, without

a need for step-by-step simulation. Remarkably, we confirm this prediction in the DMFC activity:

within ~ 250 ms, approximately by the time visual information reaches the frontal cortex , the

entire future trajectory of the ball becomes linearly decodable in the DMFC population activity.

Moreover, using representational similarity analysis , we show that dSPM explains statistically
significant and substantial variance in the neural data, subsuming nearly all of the variance that can
be explained by alternative models. These results support the hypothesis that DMFC implements a
structure-preserving physics-based representation of physical scenes and enables prediction via rapid
manifold collapse. This demonstrates dSPM’s efficacy in hypothesis-driven exploration of the neural
algorithms of complex mental representations.

A. Symbolic Structure Preserving B. Dynamical Attractor Manifolds C. Experimental Setup and Recording Sites
Representations

Toroidal Manifolds e.g. Grid Cells

Motion Forces ' Resolution/Scale)

IateY(state)
6) (0) Ot (%o, %) i
Trajectory Gravity - Time Constant (x ,.)\ !

Ring Attractors e.g. Bifrucation, e.g. PFC 79 “Pong”
Head Direction Cells Choice Representation Conditi

V/ka’ '
Choice A Choice

> NN

el A

Neurons recorded from
dorsomedial frontal cortex (DMFC)

D. Dynamical Structure-Preserving Manifolds (dSPMs)

(i) Symbolic, physics-based representation (ii) Dynamical Algorithm Corresponding (i) Reservoir Computer Analytically
to the Symbolic Representation Embedding Dynamical Algorithm
. defupdateY(state):
Ball Position state.ballY = state.ballY+ state.velY;
return state 2 —1 X, ® LOX(t)
=1y +xX;v 0 ceeie i
Hysteric y=y B . :
Switch ~ defflipSignY(state): . 3 X, ©. 7oV
Implements fme;;'sm"’ewsm"b; T X =—0X] — ﬂ X+ f(X2 . X 3) . : : 2
Velocity X
o 3 ;
def collisionBottom(state): 'EXZ ==X, + g(Yy)xg » O
Collision if (state.ballY - wallBottom) < err
Detectors flipSignY(state)

returnstate (Computational Level) (Algorithmic Level) (Implementation Level)

E. Example: Recurrent Circuit Implements Collision Detection and Resolution

(i) Initial Configuration (ii) Collision Dynamics (iii) Velocity Sign Change, Bistable State Change
Dynamical Algorithm Reservoir State Zﬁfﬂi ;f;
+v
3 4 / -y
e - I ————
Hidden Unit Activation

-1 0 1

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

Figure 1. Overview of the Dynamical Structure-Preserving Manifolds framework. (A)
The brain can be viewed as a symbolic representation system with structure-preserving mappings
of the external data-generating processes, including the physics that govern how objects move
and interact. (B) Example dynamical systems in neuroscience implementing complex cognitive
representations, including a ring attractor for heading direction, a torus for position in 2D space, and
bifurcation for decision-making. (C) Experimental design showing neural recordings from DMFC in
two macaques performing a ball interception task in a Pong-like gameboard. The “thought bubble’
indicates the hypothesis dSPM enables us to test: DMFC circuitry builds and runs forward a
physics-based representation of the gameboard, including the entities and relations of the ball, walls,
and the paddle. (D-i) The dSPM framework starts a computational-level, program-like description
that functionally captures the physics-based representation of the gameboard to support trajectory
prediction, but without neural grounding. (D-ii) Its dynamical algorithm, i.e., a set of coupled
differential equations, corresponding to the program-like representation in panel (D-i). Further
explained on panel (E). (D-iii) The dSPM’s reservoir computer analytically embeds the dynamical
algorithm in its connectivity matrix, without training, training objective, or training dataset.
This reservoir computer is a neurally falsifiable instantiation of the physics-based representation
hypothesis. (E) Collision detection and resolution in dSPM through dynamics and recurrent circuits
that undergo phase transitions when the ball approaches a wall. In each subpanel, leftmost line plots
are the phase portrait of the two coupled (out of 12) dynamical variables (cyan: velocity; yellow:
collision detection); the middle scatterplots show the hidden units of the reservoir computer; the
rightmost panels visualize the gameboard. (E-i) Unfolding the initial configuration by integrating
a positive velocity value; (E-ii) Collision detection and resolution via cubic bifurcation (yellow
line), which non-linearly bifurcates from one stable attractor in (E-i) to two stable attractors (outer
zero-crossings) and one repeller (middle zero-crossing) due to proximity to the wall. This transition
pulls the velocity variable, causing a sign flip (blue line). (E-iii) Unfolding the rest of the simulation,
similar to (E-i), but by integrating this negative velocity value —uv.

)

82

Results 0

Ball interception task 84

To apply dSPM to identify a neural algorithm of physical scene prediction, we leveraged a virtual s
ball-interception task, developed by Rajalingham et al. [26,/27]. In this task, rhesus macaques s
(Macaca mulatta) use a joystick to control a paddle to intercept a moving ball on a computer screen &
(Fig. 1C), much like the classical video game of Pong. During the late portion of its trajectory, the e
ball becomes occluded, requiring some prediction strategy for successful interception. The task design e
systematically varies the initial position and velocity of the ball across 79 unique conditions, yielding o
a range of trajectories with varying durations (range: 1450-3750 milliseconds). A trial ends when &
the ball reaches the terminal (rightmost) side of the board, regardless of whether it is successfully o
intercepted with the paddle or not. Neural activity was recorded from the dorsomedial frontal cortex o3
(DMFC) of two macaques while they performed this task. Large-scale electrophysiological recordings o
yielded activity from 1,889 neurons. The DMFC population activity contained information about the o
ball position regardless of whether it was occluded, making it a prime candidate for implementing o
physical scene prediction [27]. o7

Dynamical Structure-Preserving Manifolds o

How does the DMFC circuitry represent the gameboard and support trajectory prediction? The o
dSPM framework enables a previously unavailable modeling capability for answering this question: 100
neurally falsifiable models that implement symbolic structure-preserving representations of the 1n
physical world. Cognitive theories explore the idea that physical prediction corresponds to building 10

and running forward a structure-preserving representation (i.e., a homeomorphic map; see [28|)
of the worldly causes that shape the way scenes unfold — i.e., an internal representation of
approximate Newtonian mechanics [29] (Fig. 1C “thought bubble”). Functionally, structure-
preserving representations are appealing: Having access to the worldly causes underlying a scene
is behaviorally efficacious [28|, supporting efficient learning, flexible generalization [30+H32], and
compositionality [33]. But their typical implementations [3H5]/34], which involve off-the-shelf
computer graphics software and high-level programming languages, do not inform how biological
neural systems could implement physics-based, structure-preserving representations of objects.

Following this cognitive modeling work [3], we can express a physics-based representation of the
gameboard at an abstract computational-level by the properties and relations of the entities on
the board (ball, paddle, walls), including the ball’s position and how it changes over time (linear
dynamics), if-else branching for collision detection and force relations (Fig. 1D-i; see Methods
and Supplementary Fig. 1 for a full description). What neural mechanisms could ground such
structure-preserving physics-based representations of scenes in the brain?

The dSPM framework builds on an important clue from the recent work in neuroscience: The
geometry of low-dimensional, latent manifolds underlying neural populations is found to correspond
to basic structure-preserving representations of the world |17] (Fig. 1B), such as ring attractor
and toroidal geometry for heading direction and position in 2D space, respectively |17,[35H38]. For
example, in the heading direction circuitry of the fruit fly, neural activity traces a ring-shaped
manifold corresponding to the circular nature of head orientation [37,/38]. It remains unclear how to
construct manifolds that compute complex mental representations — beyond the relatively simple
domains that have so far been explored.

This brings us to the algorithmic-level formulation of dSPM: We suggest that in the brain, these
physics-based representations are encoded in latent dynamical algorithms (Fig. 1D-ii). A dynamical
algorithm is formulated by coupling multiple dynamical variables through the coefficients that
determine their dynamics. Unlike the common fixed-point attractors [39,40], this coupling defines
a “dynamical manifold” — a manifold whose attractors and repellers not only change over time,
but can be computationally harnessed as dynamical variables to build algorithms (cf. [41]). These
dynamical manifolds can express symbolic, program-like primitives, including branching-dependent
computations such as collision detection and resolution. To create these primitives, we leverage
controlled bifurcations as introduced in ref. [42]. For example, by defining the standard cubic
bifurcation & = g(t)z — az?®, we obtain a flexible computational substrate where stable fixed points
(attractors) and unstable fixed points (repellers) can be precisely modulated through time-varying
parameters, denoted g(¢). To algorithmically specify collision detection and resolution, we exploit
this property (Supplementary Fig. 2A): When the ball is far from any boundary (g(t) < 0), the
network acts as a pure velocity integrator with a single, globally stable fixed point at the origin. As
the ball approaches a wall (g(¢) > 0), the control parameter crosses a critical value and the system
undergoes a pitchfork bifurcation: the origin loses stability and two new stable fixed points emerge.
The state is rapidly drawn to one of these attractors, where a downstream hysteretic element flips the
sign of the velocity, sending the ball back into the arena. The dSPM couples additional differential
equations (Fig. 1D-ii), fully specifying a dynamical algorithm in 12 equations that corresponds to
the symbolic representation of the gameboard in Fig. 1D-i (see Methods and Supplementary Fig. 2,
3 for the full dynamical algorithm). Much like a ring attractor captures the structure of heading
direction, the geometry of the resulting manifold functionally maps a physics-based representation
of the gameboard.

To make this dynamical algorithm testable/falsifiable in neural data, dSPM compiles it into
a tanh-activated reservoir computer (Fig. 1D-iii) [20,43]. Following ref. [22], we analytically set
the reservoir computer’s connectivity weights such that the network’s population dynamics align
with the dynamical algorithm, without training, training data, or training objectives. In brief, this
method “decompiles” the reservoir computer’s hidden state and dynamics into an analytical basis of
its inputs and uses this basis to program the dynamical algorithm (the set of ordinary differential
equations) into the adjacency matrix of the reservoir computer (see Methods and Supplementary

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Information). The result is what we call a flow-matched embedding: When we project the reservoir
computer’s activity, which is much higher dimensional than the dynamical algorithm (1000 units in
the reservoir computer vs. 12 dynamical variables in the dynamical algorithm), onto the dynamical

variables, the projected dynamics follow the same trajectories prescribed by the dynamical algorithm.

In dynamical systems terms, this is a topologically semi-conjugate relationship — the reservoir
computer approximates the same flow field as the dynamical algorithm and thus underlying the
symbolic representation, though in a higher-dimensional space (Fig. 1E; see Supplementary Fig. 3
for a dynamic visualization).

This completes our description of our dSPM model — a novel reverse-engineering tool that
embeds the cognitive hypothesis of a structure-preserving, physics-based representation on one end
and is falsifiable in high-resolution neural data on the other. To compare dSPM to neural data, we
provide the model with the initial configuration of a given condition (for each of the 79 conditions
the monkeys experienced), including the initial ball position and velocity.

Single-state sufficiency mechanism for rapid ball endpoint prediction

The dSPM’s reservoir computer, by construction, embeds a lower-dimensional manifold whose
geometry corresponds to a physics-based representation of the scene. Once configured with the
initial conditions of the gameboard (e.g., initial position and velocity of the ball), this manifold
can be projected into the future without any additional sensory input (Fig. 2A). Ordinarily, this
can be accomplished via a step-by-step simulation of the reservoir computer, which corresponds

to unfolding the hidden state of the reservoir computer using its recurrent connectivity weights.

However, future predictions, including the far-out trajectory of the scene, can also be linearly read
out of these hidden states. This is because each momentary hidden state contains information not
only about the current ball position and velocity but also all 12 dynamical variables that determine
the local curvature of the manifold. Thus, if the physics-based representation truly determines the
flow field of the dynamical system, the properties of the local vector field at any point should specify
global trajectories once the initial conditions provide sufficient constraint [44}/45].

We turn to a striking feature of the DMFC population activity to make an initial test of this
single-state sufficiency mechanism. Rajalingham et al. [27] found that DMFC quickly encodes the
ball’s final position where it is intercepted or exits the gameboard (“ball endpoint”) by a mere
250 ms after trial onset. To replicate this result and analyze both the neural data and the models,
we created our own decoding pipeline (Fig. 2B). For each trial, we constructed a neural or model
state matrix at individual time bins (for a bin size of 50 ms), then used a generalized linear model
(GLM) [46] to decode the ball endpoint (see Methods). Fig. 2C (left) shows our replication of
Rajalingham et al.’s finding [27] of rapid ball endpoint encoding in DMFC. Rajalingham et al. [27],
based on the inability of the models they tested to explain their data, concluded that the brain may
be operating on two different “strategies”: an offline prediction of task-relevant information (ball
endpoint) that occurs early in the trial, with an unspecified mechanism, and an online next-time
step prediction in the rest of the trial.

The dSPM model offers the dramatically different possibility of single-state sufficiency: A
low-dimensional latent manifold embedded in DMFC renders the ball endpoint a linear projection
along the surface of this manifold. Remarkably, applying our neural decoding pipeline to dSPM
provides evidence for this possibility, recapitulating the rapid prediction ability of the DMFC with
high fidelity (Fig. 2C, middle). The correlation between the decoded ball positions from dSPM’s
hidden states and the actual ball position at interception closely matches the pattern observed in
the neural data, maintaining high correlation (Pearson’s r > 0.8) from early time points through
approximately 2250 milliseconds (at which point correlation decreases due to the smaller number of
Pong conditions long enough for decoding analysis). In an additional, finer-grained analysis, we
separated the 79 conditions in the dataset into “zero-bounce” (direct trajectories without a wall

collision) and “one-bounce” (trajectories with one wall collision) conditions (Supplementary Fig. 5).

This finer-grained analysis provides further evidence of the consistency between the DMFC and the
dSPM model: Both in the neural data and dSPM, we find robust ball endpoint prediction within

/B

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

A. Rapid Prediction of the Entire Future Trajectory

Dynamic Attractor
Manifold Configured \

Predicted Trajectory From
by the Perceived Deformation of Manifold
Initial Conditions of
a Trial o)

i

OOO

C. Ball End-Point Prediction Correlation by Latent State

["INext Time-point Models

each bounce condition, with slightly better performance for zero-bounce trials.

Neural Decoding Pipeline
Condition
.- 1889 Condition1 Condition 2 Condition 79

=

0 Time (ms) 3500

DMFC Neuron

Co— +
Average Firing Rate

Paddle Interception

GLM A
Neural State Matrix N
for a given timo bin | |ff -+ |. __________ > o,
post trial-start End-point Decoding? ¢
.

Vry

Stability of Dynamic Manifold Changes by
Number of Latent Units

. [Neural Data | dSPM Reservoirs Paddle-Only Models 1
» 1
c A,
3 os \/‘ﬂm‘ 5
@ ! 2
& os W 3
< | g
S o4 Wit 3 -
2 i\ I &} 02 \V\A, 300 Units
© o2 i AR
8 ‘ \ 0 A A A
O 7350 1250 2250 G250 250 1250 2250 G250 250 1250 2250 3250 250 750 1250 1750 2250 2750 3250
Time (ms) for Decoding State Vector Time (ms) for Decoding State Vector
E. Entire Future Trajectory Decoding at 250 ms Statistical Correlation to Neural Data
[Next Time-point Models
[Neural Data dSPM Reservoirs Paddle-Only Models . Error ; Correlation
1 1 1 <>
SoTSeetdoy v
08 08 i - o8 b <
—_— .
> 06 06 kK
= —_—
S os 04 06 & 06 p
5 w IS
o 9] S
o 0.2 02 s ¢]
T 04 p \ S 0af T
0 0 0 <= & I o
*kk
o2 S A% B oD N0 RS AP 5D A0 RSN 02 p 02 p
N PR N o Rs&',bi‘;" & ¥ '\\,,j b&q e &
Ball Trajectory Prediction Time Point Relative to Paddle Interception (ms) o b 0
. . N
Figure 2. Confirmation of dSPM’s single-state sufficiency mechanism of physical

prediction in DMFC activity. (A) dSPM posits that the perceived initial configurations of the
gameboard bias the DMFC activity toward a low-dimensional manifold whose geometry corresponds
to a physics-based representation of the gameboard. This manifold renders points along the future
trajectory of the ball lawfully decodable. (B) Our decoding pipeline is applied to both the neural
data and models. This panel depicts the analysis of 1,889 DMFC neurons across 79 conditions
in the dataset. For each time bin of 50 ms (from the start of the trial to the end), we used
a generalized linear model (GLM) to decode the ball’s position (x-axis) at paddle interception
(“ball endpoint”). (C) Temporal evolution of decoding accuracy for the ball endpoint from DMFC,
dSPM, and task-optimized RNNs. DMFC neural activity (left, red) shows early prediction capacity
(~ 250ms after trial onset), with high correlation (Pearson’s r > 0.8) maintained until late in the
trial. This pattern is closely matched by dSPM (middle, cyan), while task-optimized RNNs (right,
green/brown) show slowly improving prediction accuracy over time. (D) Stability of dynamical
attractors is necessary for persistent ball endpoint prediction over time in dSPM. dSPMs with more
units (1000 vs. 500 vs. 300) more accurately simulate scenes (Supplementary Fig. 4) and maintain
stable predictions of ball endpoint for more extended periods. (E) Decoding accuracy for the ball’s
position across multiple points along its future trajectory (analyzed from -1450ms relative to paddle
interception), using neural and model state vectors at 250 ms after trial onset. This confirms the
striking prediction of dSPM: at the trial start, the complete future trajectory of the ball, not just
the endpoint, is decodable in DMFC (Pearson’s r > 0.8 throughout time for DMFC and dSPM),
but not in task-optimized RNNs. (F) Violin plots and statistical comparisons of the entire future
trajectory decoding performance of models. dSPM achieves significantly lower error rates (left) and
higher correlation (right), relative to task-optimized RNNs in matching DMFC.

206

Crucially, in DMFC, this rapid prediction ability of the ball endpoint emerges 250 ms after
trial onset, whereas in dSPM (which is provided with the initial configurations of trials), it is
immediate (Fig. 2C left vs. middle). This is consistent with the 200-250 ms signal transduction
time to this frontal region [24], accounting for the time to “initialize” the DMFC manifold with
the initial configuration of the gameboard. This suggests that as soon as the perceived initial
configuration of the gameboard is available to DMFC, its neural activity is biased toward an
dSPM-like low-dimensional manifold whose geometry corresponds to a physics-based representation
of the scene.

An additional prediction of the single-state sufficiency mechanism is that this ability to linearly
decode far-out future states should gracefully degrade with the degrading accuracy of the manifold
embedded within the reservoir computer. Testing this prediction in the DMFC activity would require
perturbation techniques [47] to modulate the accuracy of the neural manifold, which future research
should explore. But we can readily test this possibility in the dSPM model. Specifically, we vary the
accuracy of the manifold by reducing the number of hidden units and thus the computational capacity
of the reservoir computer. Bigger reservoir computers more accurately simulate the gameboard
(Supplementary Fig. 4), suggesting that sufficient dimensionality is required to approximate the
physical scene. Crucially, we found that these larger networks also maintained stable predictions
of ball endpoint for longer periods (Fig. 2D), similar to the DMFC population. This result
provides insight into the computational requirements — the accuracy of the manifold in encoding
physics-based representations — for robust physical scene prediction in biological neural networks.

Confirming the entire future trajectory prediction of dSPM

These results, focusing on the rapid prediction of the task-relevant ball endpoint information, lead
to a remarkable prediction about the DMFC activity: Because the ball endpoint is not coded in any
special way in the structure-preserving representation of the gameboard within dSPM, we predict
that at the start of the trial, not only the endpoint but also the entire future trajectory of the ball
will be linearly decodeable in the neural data. In other words, a manifold configured by the perceived
initial conditions of the gameboard should make not just the ball endpoint linearly decodable, but
also the rest of the trajectory in between. Remarkably, we confirm this prediction in both the DMFC
activity and dSPM. In the DMFC, when decoding from neural state at 250 milliseconds after trial
onset, we reconstruct the ball’s position at any point along its future trajectory with high accuracy
(Pearson’s r > 0.8; Fig. 2E, left). The dSPM model replicates this capability, maintaining high
correlation throughout the future trajectory (Fig. 2E, middle). These results further establish that
physical prediction in DMFC is a consequence of the geometry of a latent, low-dimensional manifold

embedded within the neural activity that encodes a physics-based representation of the gameboard.

Alternative models cannot explain key features of the DMFC activity

To isolate dSPM’s explanatory power, we compare it to two distinct classes of alternative models:
(i) task-optimized RNNs and (ii) a task-performant heuristic taking advantage of the specifics of the
current ball-interception task. First, task-optimized RNNs acquire high-level statistical regularities

in their training datasets needed to minimize the respective objectives under which they are trained.

One group of RNNs, which we call “Next-time point RNNs”, is trained on the combined objectives
of predicting where the ball will be in the next time step and where to place the paddle for successful
interception. Another group of RNNs, which we call “Paddle-only RNNs” | is trained only on the
objective of where to place the paddle. Crucially, these models are directly from ref. [26], which
showed that the ball interception performance of these models strongly correlates with the behavioral
performance of the animals in the current task [26]. Second, we also test a heuristic strategy, called
“Linear Map”, specifically designed for the current task. The linear map heuristic has access to
the moment-by-moment position and velocity of the ball and a linear regression to map this state
information to the ball endpoint. Does dSPM provide explanatory power over the DMFC activity,
above and beyond what can be explained by these strong alternatives?

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

255

Critically, we find that the answer is yes: these alternative models fail to reproduce the full
extent of DMFC’s future-trajectory-prediction abilities. We summarize these results along three
points. First, standard task-optimized RNNs (next-time point and paddle-only models of ref. [26])
fail to reproduce DMFC- and dSPM-like rapid ball endpoint prediction, a result we replicate
and extend from Rajalingham et al. [27] (Fig. 2C, right; see Methods). Instead, they show a
gradual improvement over time. Moreover, these RNNs qualitatively decouple from neural dynamics
at the finer-grained analysis of conditions with only “zero-bounce” or “one-bounce” trajectories
(Supplementary Fig. 5).

Second, unlike the DMFC and dSPM, these RNNs also do not recapitulate the full future
trajectory prediction, instead showing decreasing prediction accuracy for more distant future time
points (Fig. 2E, right). Statistical analysis confirms that when compared to DMFC data, dSPM
achieves significantly higher correlation and lower error than these task-optimized RNNs (Fig. 2F).

Third, the simplicity of the gameboard in the current ball interception task allows for a heuristic,
non-simulation strategy for predicting the ball’s endpoint — the linear map heuristic, which can
accurately predict the ball’s endpoint from the early position/velocity state vector, similar to
DMFC and dSPM (Supplementary Fig. 5). Does the DMFC neural activity employ this specialized
heuristic strategy, instead of the structure-preserving nonlinear dynamics that dSPM stipulates?
To answer this, we analyzed a divergent prediction made by the linear map heuristic and dSPM
(Supplementary Fig. 6): the generalization performance of the ball endpoint decoder across Pong
conditions with zero-bounce versus one-bounce trajectories. Linear map yields a time-invariant,
nearly perfect generalization of the endpoint decoder across the bounce groups. In contrast, dSPM,
due to its bifurcating dynamics for collision detection and resolution, yields a time-dependent and
less performant generalization of the endpoint decoder across the bounce groups. When we apply
this cross-bounce endpoint decoder analysis to the DMFC activity, we find that it more closely aligns
with dSPM, demonstrating a time-dependent cross-bounce generalization. That DMFC qualitatively
decouples from the linear map heuristic provides important evidence for dSPM’s physics-based
representation. Despite the availability of a simpler solution that generalizes perfectly across bounce
groups (i.e., the linear map heuristic), DMFC implements condition-specific nonlinear dynamics,
much like the bifurcating attractors of dSPM (illustrated in Supplementary Fig. 3 animation).

We suggest that the inability of these alternatives to explain DMFC reflects DMFC’s evolution
for diverse 3D physical scenes, not just 2D ball tracking on a simple gameboard. Indeed, both
DMFC and dSPM match the endpoint decoding performance of the linear map heuristic within each
bounce condition (both achieve ~ 0.8 correlation; Supplementary Fig. 5), while implementing rich
condition-specific dynamics that does not generalize across bounce conditions. This computational
strategy may explain the involvement of frontal circuitry across diverse sensorimotor behaviors
requiring physics prediction, including reaching movements [48], pursuit and evasion [49], and object
manipulation [50].

Similarly, the failure of task-optimized RNNs to replicate rapid endpoint prediction highlights
the central difficulty we identified in the Introduction regarding using standard deep neural networks
to study neural algorithms. Despite the rigorous exploration of training objectives and architectures
by researchers (e.g., [21L[23.|51]), it is not readily clear what it would take to prevent these task-
optimized RNNs from exploiting shortcuts that deliver good task performance without rapid endpoint
prediction ability. Training objectives, datasets, and network architectures provide only indirect tools
to synthesize the often black-box task-optimized statistical representations in DNNs. In contrast, the
dSPM framework empowers researchers with direct explorations of falsifiable algorithmic possibilities
of neural mechanisms. Together, these results of alternative models suggest the brain prioritizes
physics-based structure-preserving representations over computational shortcuts, even when these
learned shortcuts or simple heuristics would suffice for task performance.

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

A. Representational Similarity B. Non-Residualized RSA Across D. Residualized RSA Between Brain, dSPM
Analysis (RSA) All Model Types Reservoirs, and Alternative Models

dSPM Reservoir State Neural Activity c s
° o orrelation (Spearman)
o o o8
o . g 01 0 02 04 06 08 1
o ’ g os jo
. ‘% dSPM Reservoirs
0 aQ oo
i aé\" . " &
State Vectors Across Conditions and Time 5 R o 550 &
S 02 Sef €
8 'L #/\ 'zs\\ €
0 : EEY \
T
Cong, ;Cong. 5 _Cong, 70 Cong ; Cong, 5 _Cong, 79 ° ¥
dSPM NextTP Paddle Only Linear Map Next TP Models
Model Type
" R L
. . Dials 3 2 8]
~ I - ~ I =~ C. Regression Analysis Pipeline g £& Tesgne
x N
s L£FST B
S ED
Distance Shared Variance with § TS ¥
Matrix Regressor (RG) §
Pairwise [3 Linear Map
Distances 3 ‘
Brain | — Brain |\ RG > &
Model Q p?é R
\ ¥ L T
oy Q &
§ $ &Qé N 4
Target Target RG &
RSA Correlation Metric J— 3
Model (Model \ Model § s **x p <0.001

Figure 3. dSPM captures the similarity structure of DMFC neural dynamics across
moments and conditions. (A) We performed a representational similarity analysis comparing
DMFC neural similarity matrix to the similarity matrices of each model. (B) dSPM reservoirs
achieve a significantly higher correlation (Spearman’s p) than the alternatives with lesser structure-
preserving representations. (C) A schematic of the partial regression pipeline to determine and
compare unique variance explained by different model types. (D) Correlation (Spearman’s p)
between model and neural representational similarity matrices is shown. The plot is organized by
model type (top: dSPM; middle: next-time point; bottom: linear map) and residualization condition
(controlling for variance explained by different model types). Supplementary Fig. 7 shows the full
set of residualization analysis. dSPM shows significantly higher correlations with neural data than
alternatives across all residualization settings. Critically, when residualizing dSPM reservoir states
from alternatives, there remains little explanatory power of these alternative models, while dSPM
maintains a high correlation even after residualizing out all alternative models. This asymmetry
indicates that dSPM reservoir captures fundamental aspects of neural computation not present in
alternative models.

dSPM captures representational similarity of DMFC dynamics and sub-
sumes what can be explained by alternatives

Finally, we also tested the ability of dSPM and alternative models to explain the representational
similarity of neural dynamics across the 79 Pong conditions and moments in these conditions, using
representational similarity analysis (RSA; see Methods) . Relative to the decoding-based analysis
we have so far focused on, RSA imposes a qualitatively different test of candidate models, involving
a direct analysis of their full internal states for explaining DMFC activity. In addition, RSA, via
partial correlation, allows us to test whether dSPM maintains explanatory power after accounting for
the variance that can be explained by alternative models (the task-performant linear map heuristic
and the task-optimized RNNs), which lack the physics-based representation encoded in dSPM.
For a given data source (either a model or DMFC), we built a representational similarity matrix
where each cell is the correlation between the activity at time-point ¢; in condition k; and the activity
at time-point ¢; in condition k; (Fig. 3A). We found that the similarity matrix of dSPM achieves
significantly and substantially higher correlations with the DMFC similarity matrix (r = 0.59),
compared to the similarity matrices of the next-time point (r = 0.35,p < 0.001) and paddle-only
(r = 0.08,p < 0.001) models, as well as the linear map heuristic (r = 0.32,p < 0.001) (Fig. 3B; all p
values indicate pairwise comparisons against dSPM using direct bootstrap hypothesis testing).

10,31

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

We then used partial correlation analysis to ask the extent to which the dSPM explains non-
overlapping variance in the DMFC similarity matrix, relative to the task-optimized RNNs and linear
map heuristic (Fig. 3C; see Methods). We found that dSPM explains a substantial amount of
variance after residualizing both kinds of task-optimized RNNs; but this was not the case for the
next-time point model which had nearly no variance left to explain after residualizing the dSPM
and paddle-only models (Fig. 3D; see Supplementary Fig. 7 for a full residualization analysis).
The differences in the residualized variances explained by dSPM versus next-time point RNN were
statistically significant (p < 0.001, Fig. 3D, Supplementary Fig. 7).

We found a strikingly similar result when we repeated these partial regression analysis between
dSPM and the linear map heuristic (Fig. 3C, D). This heuristic represented each time point
for each condition using the ground-truth position and velocity of the ball (corresponding to the
“Oracle” covariate in ref. [51], which outperformed all model variants considered in that study). We
found that dSPM not only statistically significantly and substantially outperforms this covariate
(r = 0.59 for dSPM versus r = 0.32 for linear heuristic), but also subsumes all of its portion of
the explained variance (Fig. 3D). These results strongly suggest a neural mechanism of physical
prediction in DMFC through a latent, low-dimensional manifold whose geometry corresponds to a
physics-based representation of the gameboard, instead of task-optimized statistical representations
or task-performance heuristics.

Discussion

Distinctively, the present work synthesizes two prominent views of the brain, across the fields of
cognitive science and neuroscience, which have so far been developed largely independently of each
other: The brain as a symbolic representation system of structure-preserving mappings [28}/53] and
the brain as a dynamical system of low-dimensional manifolds [17]. Unlike typical cognitive models
that focus on computational-level explanations and behavioral data, dSPM penetrates through
levels of analysis and offers falsifiable hypotheses of neural mechanisms [54]. And instead of the
common neuroscientific approach of analyzing high-dimensional neural data through dimensionality-
reduction techniques to visualize low-dimensional manifolds (e.g., [55]), our approach provides a
computationally constructive handle on these manifolds. By doing so, this work suggests a neural
mechanism of physical prediction in macaque DMFC, as a latent low-dimensional manifold whose
geometry corresponds to physics-based representations of scenes.

We focused on neural mechanisms of physical prediction, but we believe dSPM will generalize to
other sorts of structure-preserving representations, including representations of agents (e.g., [56]),
places [57], and more complex physical scenarios (e.g., [5]). The key to this generalization is to
build dynamical algorithms of these domains. (The analytical mapping from dynamical algorithms
to reservoir computer is general-purpose.) Our optimism is due to three reasons. First, from the
early days of computation to recent times, despite interruptions, dynamical algorithms have been
developed for increasingly sophisticated problems, from the “differential analyzer” of Vannevar Bush
and colleagues [58] for solving integrals and other engineering problems to virtualization, inverse
problems, and dynamical memories by Kim & Bassett [22]. Second, many of the computational
primitives we utilized here for representing the gameboard, including objects, if-else branching
collision logic, and velocity integration, are common motifs in the structure-preserving representations
of more complex physical scenarios and other domains. Third, the strength of evidence we provide
for dSPM in the present work motivates us, and hopefully other researchers, to pursue the extensions
of dSPM beyond the current case study of physical prediction. For instance, we see the domains of
mental navigation as in [47] and online perception, physical prediction, and planning settings as
in [49] as immediate next targets for generalizing dSPM.

With such generalization at hand, dSPM promises to be an invaluable reverse-engineering tool for
uncovering the computational foundations of biological intelligence. In biology, prey species are often
born with the ability to evade predators and seek safety in a complex, dynamically changing world,
pointing to the possibility of sophisticated precocial physical prediction with little or no opportunity

1131

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

for experiential learning. Moreover, the biological networks controlling these behaviors support
rapid and flexible experiential learning in survival-critical behaviors [59|60]. Similarly, despite the
helplessness of human infants, developmental psychology suggests a sophisticated starting point for
human cognition [61]. The dSPM model, by synthesizing symbolic representations and dynamical
systems, achieves what biology demonstrates: efficient, robust, and interpretable intelligence that
begins with, rather than learns, the fundamental rules governing our world.

Methods

Dynamical Structure-Preserving Manifolds (dSPM)

Here we provide the details of the computational, algorithmic, and implementation levels of dSPM.

Computational-Level Description: Structure-preserving, physics-based representations
for physical prediction

At the computational level, physical prediction can be described as building and manipulating physics-
based representations of the physical world [29], flexibly supporting downstream adaptive behaviors.
Following Battaglia et al. |29], we provide a structure-preserving physics-based representation of
the gameboard in Supplementary Fig. 1. This symbolic program describes the entities (objects,
walls, paddle) and their dynamics and interactions, using a high-level object-oriented programming
language. The dSPM framework transforms such computational-level hypothesis, which lack neural
grounding, into falsifiable proposals of neural mechanisms.

Algorithmic-Level: Dynamical Algorithm

Recent work in neuroscience provides evidence that basic structure-preserving representations, such
as one’s heading direction or 2D position in space, are encoded in low-dimensional, latent manifolds
underlying high-dimensional neural activity. These manifolds contain attractor dynamics (stable
and unstable points of attraction and repulsion) that functionally map entities and their relations
in the world. To realize complex cognitive representations, we need to express significantly more
sophisticated computations in these dynamics.

To do so, we build on Kim & Bassett [42] to formulate a dynamical algorithm of a physics-based
representation of the gameboard. This dynamical algorithm (Supplementary Fig. 2, 3) is a set of
12 coupled differential equations whose outputs are denoted as {z1, 22, ..., 212}. This dynamical
algorithm defines a dynamical manifold, meaning that it’s a manifold whose attractors and repellers
change over time. These dynamical attractors — i.e., nullclines in phase space that change with
time ¢ — correspond to a physics-based representation of the gameboard, including position updates,
as well as collision detection and resolution. The 12 dynamical variables implement four main
computational blocks (corresponding to the four code blocks in Supplementary Fig. 1) based on two
forms of third-order polynomial logic.

We first describe these polynomials.

e Pitchfork bifurcation where f(t) controls whether we have a single stable attractor at the
origin, (f(t) < 0), or two symmetric non-zero stable fixed points at (++/f(¢),0) and one
unstable attractor at the origin, (f(¢) > 0), (textbook example, [62])

1
—i=f(t)z— 23
L= f()

e Polynomial-Shift Operator The second cubic simply slides the attracting point left or right
without changing its stability. The time-varying term f(t) raises or lowers the cubic, while
the constants o and S tune the slope so that |z| remains < 1. Keeping the state in this range
guarantees that the activity vector of our recurrent network never leaves the ball-park set by

1231

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

the weight matrix’s spectral radius (roughly, the largest eigenvalue magnitude) [63], preventing
runaway excitation

%z' = —az® + Bz + f(t)

In these equations, the coefficient 7 controls the sensitivity of the dynamics encoded in these
polynomials to local changes (as well as initial conditions). Specifically, when || > 0, then the
derivatives on either side of the fixed points are much stronger (Supplementary Fig. 2), making
slight changes in the system more sensitive to changes. (This time constant is multiplicative to the
global time constant of our reservoir computer, represented by in our update equation in the next
section.)

The four computational blocks of our dynamical algorithm are as follows.

1. Constant registers (velocity components)

To make each trial’s initial velocity available to the rest of the network, we reserve two
dedicated state variables, z; and 29, whose dynamics are purely integrative registers:

|’Um|i—>7;’1:0 (Zl)
[uy| = 20 =0 (22)

Because z; = Z9 = 0, these variables act as constants during the simulation, giving the dSPM
a read-only handle on (v,,v,) while re-using the same recurrent weights across all trials.

2. Velocity Logic

T 23 =23+ (25)21 (2:3)

Y Za =24+ (27)22 (24)

3. Hysteretic Switch for Nonlinear Reflections.

Each state variable takes values in [—z., x|, with

—z. = “low” (0), +2x. = “high” (1).

The dynamic logic couples two recurrent variables, the wall-collision variable (z11) and the
opposite hysteretic variable z5 <> zg and z7 <> 23

S = 201720

(&)

implements a Boolean NAND gate:

-z, ify; = +xc or y; = 42,
(Yisyj) — =]
‘. ify;=y; = —xc.

Because the output itself sits at a stable fixed point (£z.), it retains its state against small
perturbations — i.e. it forms a hysteretic memory element. Cross-coupling two such units
yields a bistable attractor manifold that we use as the circuit’s nonlinear reflection (bounce)
switch.

13,31

413

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

sign(v,) — %25 = —azd + Bzs + f(211, 26, 1) (25)

—sign(vy) %2’6 = —azp + Bze + f(212, 25, 1) (%6)
sign(vy) — 5547 = —azd + Bar + f(zo, 28, 1) (27)
—sign(vy) — %738 = —azs + Bag + f(z10, 27, 1) (%)

4. Collision Detection, where the extent of the board is defined by its height (h) and its width
(w), ps and p, are the paddle’s horizontal position and vertical position respectively, and e
and o define the sensitivity/resolution of the collision detector relative to the ball’s distance
to the walls/paddle.

Top Collision [0,1] — 1520 = — (20)° + (24 + (h —€))210 (20)

Bottom Collision [0,1] = tdo510 = — (210)° — (24 + (=h — €)) 210 (210)

Left Collision [0,1] — o511 = — (211)° — (23 + (—w — €))z10 (211)

Right/Paddle Collision [0,1] > 55212 = — (212)° + ([(23 — pu)? + (24 — py)?] — (w — a())z1)2
212

Implementation Level: A Reservoir Computer Analytically Embedding the Dynamical
Algorithm

In contrast to the traditional task-optimization approach that learns the weights via numerical
training in a deep neural network, we constructed a separate class of models, i.e., reservoir computers,
by analytically embedding the dynamical algorithm defined above (the twelve differential equations
encoding ball motion, wall collision logic, and velocity sign changes) into the reservoir computer’s
connectivity weights. We do so by following the method of Kim & Bassett [42].

The basic steps of this method are as follows.

1. Start from the standard continuous-time echo-state equation

1
—1 = —r + tanh(Ar 4+ Bx + d), (1)
~

with tanh nonlinearity. We draw B i.i.d. from U[—0.5,0.5]; A is initially set to for the
open-loop solution which will be “programmed” later. (note: there are multiple notational
conventions for expressing the time constant of a differential equation: 7@ = f(z) or %x = f(z).

Here we use 7 = %, in line with the convention of Kim & Bassett. [42])

2. Solve hidden state as a function of inputs. Because the leakage term linearises Eq. 1
around a randomly chosen operating point, r*, we can solve for our bias term given r*

d = atanh(r*) + Bx
and the solution to the echo-state equation can be expressed as a smooth map

r(t) = h(x,%,%,...). (2)

14/31

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

455

456

3. Symbolic expansion. Expand Eq. 2 to k*" order via a multivariate Taylor series, obtaining
a “design matrix”

R = Ji[h] € RV*F. (3)

Each column is a monomial basis function of the inputs, their time derivatives, and the
multivariate interaction terms up to order k.

4. Program the desired vector field. Let O € R™** hold the same monomials but evaluated
on the target dynamics z = f(z). Compile the programmed readout

W =argmin |[WR — O|F, (4)
w
where || - | denotes the Frobenius/Ls norm. This yields WR ~ O and hence
W(r + ;f) ~ 7+ Lf(z). (5)

5. Load initial conditions. Inject a given trial’s starting state (zg,%Zo) through the input
channel to set the reservoir at its conditional operating point, r;:

r; = tanh(Bzg + d). (6)

This latent vector, zg, contains the displacement of r* in our N-dimensional space such that
the networks time evolution from this point indexes a unique board configuration (initial
condition for our update equation) (ball position & velocity).

6. Close the loop. Split Bx into a recurrent part Bx and an exogenous part BX, then substitute
X =Wr: !
—f = —r + tanh((BW)r + Bx +d). (7)
Y

This yields the effective adjacency A* = BW. With the loop closed, we numerically integrate
Eq. 7 (Runge—Kutta 45) from r} to simulate the board dynamics; the observable state can be
optionally read out via Wr(t).

Full derivations and hyperparameter choices appear in Supplementary Material “Details of
Programming Reservoir Computer”.

Applying dSPM to Experimental Conditions

Once we have our programmed reservoir computer, we can “load in” the initial conditions and evolve
our network over time. As the reservoir evolves its distributed computation, across the N hidden
units, together computes the dynamical algorithm that constitute our physics-based representation
of the gameboard.

We initialize dSPM with the initial conditions used within the monkey experiments. The initial
conditions contain ball position and velocity for each trial, which dSPM evolves autonomously
without external inputs for the duration of the given Pong condition.

Traditional Task-Optimized Deep Neural Networks

Rajalingham et al. [26] trained a large ensemble of standard machine-learning-style RNNs on the
same interception task, using supervised learning protocols. These networks — here referred to as
“task-optimized RNNs” — took the ball’s visual inputs and were optimized to predict and/or control
the paddle’s position in order to intercept the ball.

The next time-point models were trained to predict both the ball position in the next time step
and to control the paddle (where the paddle should be for successful ball-interception at the end

15,31

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

of the trial). They considered different variants of the next time-point models depending on the
specifics of the loss and architecture, which we pool together as they did not differ from each other
statistically. The paddle-only models were trained only the latter objective — the ball endpoint.

They considered different hyperparameter choices [e.g., number of units, RNN circuit type (GRU,
LSTM), input representation, etc.]. Here we report the best performing variants (number of hidden
units=40; RNN circuit type=LSTM or GRU, input representation=motion filters; pixel input or
Gabor-filtered input). We used these task-optimized RNNs “as is”, extracting their hidden states
on each condition for comparison with DMFC recordings and dSPM.

Stimuli and Neural Data

Two adult macaque monkeys (Macaca mulatta), one male (Monkey P) and one female (Monkey M),
participated in this study. Animals performed a naturalistic ball interception task developed by
Rajalignham et al. [26,27]. In this task, each trial began with the ball in a random initial position
and velocity in a two-dimensional arena. The ball traveled rightward at a constant speed, with zero
or one bounce off the horizontal walls. Crucially, the ball was rendered only for the early portion of
each trial; its trajectory then became occluded by a virtual “occluder” before reaching the far right
side. The monkeys controlled a paddle positioned at the right edge via a one-degree-of-freedom
joystick, attempting to intercept the ball upon its (unseen) arrival. Each trial ended when the ball
either made contact with the paddle or exited the right boundary of the display. Inter-trial intervals
were 750 milliseconds. Monkeys were rewarded with a juice drop when they successfully intercepted
the ball. They were free to move their eyes during the occluded period and routinely shifted gaze in
ways consistent with anticipating future ball positions.

Neural signals were recorded from DMFC using high-channel-count silicon probes (Neuropixels)
in one animal (Monkey M) and linear probes (Plexon V-probes) in the other (Monkey P). Recording
sites spanned an 8 mm x 3 mm grid in Monkey P (24 distinct locations, each sampled in two
sessions) and a narrower grid in Monkey M (6 locations, each sampled in one session). Neurons were
neither preselected nor excluded based on their response properties, and recording sites were not
chosen based on putative task selectivity. Spikes were sorted with an automated algorithm (Kilosort
3.0) and subjected to quality checks that removed unstable or noisy units. Per-trial, per-neuron
spike counts were binned in 50-milliseconds intervals. Only units with significant split-half reliability
(p < 0.01) were retained, resulting in a final dataset of 1,889 reliably recorded neurons across both
monkeys. Trials were organized into 79 unique stimulus conditions.

Neural Data Analysis and Model-Data Comparisons
Trajectory Decoding from State Vectors

To test the future decoding capabilities of latent state representations of DMFC and different models,
we used generalized linear model (GLM) [46] fits to decode the positions of the ball from the latent
state-vectors across time. Neural population responses, task-optimized RNN hidden states, and
dSPM reservoir computer states were all compared via two complementary analyses: ball endpoint
decoding (Fig. 2) and full trajectory decoding (Fig. 2). All GLM results reported are cross-validated
using nested 5-fold cross-validation with 4-fold inner cross-validation for hyperparameter selection.

For ball endpoint decoding, we regressed each population’s activity at each time point onto the
ball’s actual position at the time it would leave the board (where it would be intercepted by the
paddle). For full trajectory decoding, we regressed each population’s activity at 250 milliseconds
onto the ball’s actual position along its trajectory (including endpoint). The x-axis in Fig. 2E
represents time relative to paddle interception (0 ms). Since trials varied in duration due to different
ball velocities and starting positions (ranging from 29 to 77 time bins at 50 ms resolution), we aligned
all trials to their endpoints. To maximize the amount of training/testing data available across all
trials, we could only decode positions going back 1450 ms from interception—corresponding to the
duration of the shortest trial (29 time bins x 50 ms). This ensures that neural data from the 250

16,31

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

ms time point could be used to decode ball positions at all time points shown for every trial in our
dataset.

Representational Similarity Analysis

Representational similarity analysis (RSA) evaluated the geometry of each latent space by computing
pairwise Euclidean distances among the (79 conditions x 71 time bins), creating representational
dissimilarity matrices (RDMSs) for each model and the neural data. We then computed Spearman
correlations between model and neural RDMs to assess representational similarity. To determine
whether dSPM captured unique variance in neural representations beyond task-optimized models
and heuristics, we employed a residualization procedure. For each model type, we regressed out the
contribution of alternative models from both the neural and model (upper triangular, flattened)
dissimilarity matrices using ordinary least squares:

residual = target — X (X7 X) ! X target

where X7 X contains the regressor dissimilarity matrix. Residualization was performed as the
following: We randomly sampled a single model instance from the source model class as the regressor,
repeated across all model instances to account for sampling variability. This procedure was applied

bidirectionally, residualizing dSPM models from task-optimized models and vice versa. In Fig.

3D, because the linear map heuristic has no variability (as it is based on the ground truth), our
method carries over the variability due to dSPM instances for statistical quantification. We report
approach all possible residualization pairings in Supplementary Fig. 7. Statistical significance
was determined using parametric pairwise comparisons between residualized correlation values
(paired samples two-tailed t-test). [Notice that we have equal number (24) of dSPM instances and
task-optimized RNNs.] The asymmetric pattern of residualization results — where dSPM maintained
high correlation with neural data after removing task-optimized and linear heuristic’s variance, but
not vice versa—indicates that dSPM capture fundamental aspects of neural computation not present
in the alternative models.

Computational Implementation

All analyses were performed in MATLAB. Where parallelization was beneficial, data splits and model
simulations were distributed across a high-performance cluster, with each trial or cross-validation
fold assigned to a separate worker. For consistency, the same 79 task conditions were used in both
neural and model analyses, and all time-series were binned at 50 ms. Optimal hyperparameters in

regression or decoding analyses (e.g., ridge penalty terms) were chosen via nested cross-validation.

The final outputs (hidden states, regression weights, decoded trajectories) were stored and evaluated
with identical metrics for both neural and model data.

Code and Data Availability

All methods for data preprocessing, model simulations, and decoding analyses were implemented in
MATLAB and will be made available through a public repository.

Acknowledgements

We are grateful to Mehrdad Jazayeri for discussions about this project and generously sharing neural
data. We also thank Damon Clark and Steve Chang for their comments on this work. We are
thankful to the Cognitive and Neural Computational Lab at Yale for their feedback throughout
this project, and to Yale Center for Research and Computing for maintaining the HPCs utilized by
this project (Misha, Milgram). This work was supported by National Science Foundation (under
CAREER Award No. BCS-2441520).

17,31

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

References

1.

10.

11.

12.

13.

14.

15.

Thomas L Griffiths, Nick Chater, Charles Kemp, Amy Perfors, and Joshua B Tenenbaum.
Probabilistic models of cognition: exploring representations and inductive biases. Trends
Cogn. Sci., 14(8):357-364, August 2010.

C R Gallistel and Adam Philip King. Memory and the Computational Brain: Why Cognitive
Science will Transform Neuroscience. John Wiley & Sons, September 2011.

. Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of

physical scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327—
18332, 2013.

. Ilker Yildirim, Max H Siegel, Amir A Soltani, Shraman Ray Chaudhuri, and Joshua B

Tenenbaum. Perception of 3d shape integrates intuitive physics and analysis-by-synthesis.
Nature Human Behaviour, 8(2):320-335, 2024.

WY Bi, AD Shah, KW Wong, BJ Scholl, and I Yildirim. Computational models reveal that
intuitive physics underlies visual processing of soft objects. Nature Communications, in press.

Thomas L Griffiths, Edward Vul, and Adam N Sanborn. Bridging levels of analysis for
probabilistic models of cognition. Curr. Dir. Psychol. Sci., 21(4):263-268, August 2012.

David Marr. Vision: A computational approach, 1982.

. Riidiger Wehner. ‘matched filters’—neural models of the external world. Journal of comparative

physiology A, 161(4):511-531, 1987.

. Donald D Hoffman. The interface theory of perception. Stevens’ handbook of experimental

psychology and cognitive neuroscience, 2:1-24, 2018.

Robert Geirhos, Jorn Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence 2020 2:11, 2(11):665-673, 11 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. 2nd International
Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings, 12 2013.

Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz,
Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli,
Colleen J Gillon, Danijar Hafner, Adam Kepecs, Nikolaus Kriegeskorte, Peter Latham,
Grace W Lindsay, Kenneth D Miller, Richard Naud, Christopher C Pack, Panayiota Poirazi,
Pieter Roelfsema, Jodo Sacramento, Andrew Saxe, Benjamin Scellier, Anna C Schapiro, Walter
Senn, Greg Wayne, Daniel Yamins, Friedemann Zenke, Joel Zylberberg, Denis Therien, and
Konrad P Kording. A deep learning framework for neuroscience. Nat. Neurosci., 22(11):1761—
1770, November 2019.

Li Ji-An, Marcus K Benna, and Marcelo G Mattar. Discovering cognitive strategies with tiny
recurrent neural networks. Nature, pages 1-9, 2025.

David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in
high-dimensional recurrent neural networks. Neural Comput., 25(3):626-649, March 2013.

R Shepard and S Chipman. Second-order isomorphism of internal representations: Shapes of
states . Cognitive Psychology, 1:1-17, 1970.

18,31

573

574

575

576

577

578

579

580

581

582

583

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

Christian K Machens, Ranulfo Romo, and Carlos D Brody. Flexible control of mutual
inhibition: a neural model of two-interval discrimination. Science, 307(5712):1121-1124,
February 2005.

Manthan Khona and Ila R Fiete. Attractor and integrator networks in the brain. Nature
Reviews Neuroscience, 23:744-766, 2022.

Jimmy Smith, Scott Linderman, and David Sussillo. Reverse engineering recurrent neural
networks with jacobian switching linear dynamical systems. In M Ranzato, A Beygelzimer,
Y Dauphin, P S Liang, and J Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 16700-16713. Curran Associates, Inc., 2021.

Victor Geadah, International Brain Laboratory, and Jonathan W Pillow. Parsing neural
dynamics with infinite recurrent switching linear dynamical systems. Int Conf Learn Represent,
2024.

Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German national research center for information
technology gmd technical report, 148(34):13, 2001.

Rishi Rajalingham, Hansem Sohn, and Mehrdad Jazayeri. Dynamic tracking of objects in the
macaque dorsomedial frontal cortex. Nat. Commun., 16(1):346, January 2025.

Jason Z Kim and Dani S Bassett. A neural programming language for the reservoir computer.
arXiv [cond-mat.dis-nn/, March 2022.

Rishi Rajalingham, Aida Piccato, and Mehrdad Jazayeri. Recurrent neural networks with
explicit representation of dynamic latent variables can mimic behavioral patterns in a physical
inference task. Nat. Commun., 13(1):5865, October 2022.

Pierre Pouget, Erik E. Emeric, Veit Stuphorn, Kate Reis, and Jeffrey D. Schall. Chronometry
of visual responses in frontal eye field, supplementary eye field, and anterior cingulate cortex.
Journal of Neurophysiology, 94(3):2086-2092, 9 2005.

Hamed Nili, Cai Wingfield, Alexander Walther, Li Su, William Marslen-Wilson, and Niko-
laus Kriegeskorte. A toolbox for representational similarity analysis. PLoS Comput. Biol.,
10(4):e1003553, 2014.

Rishi Rajalingham, A Piccato, and Mehrdad Jazayeri. Recurrent neural networks with
explicit representation of dynamic latent variables can mimic behavioral patterns in a physical
inference task. Nature Communications, 13:1-15, 2022.

Rishi Rajalingham, Hansem Sohn, and Mehrdad Jazayeri. Dynamic tracking of objects in the
macaque dorsomedial frontal cortex. Nature Communications, 16:346, 2025.

C. R. Gallistel and Adam Philip King. Memory and the Computational Brain. 2009.

Peter W. Battaglia, Jessica B. Hamrick, and Joshua B. Tenenbaum. Simulation as an engine
of physical scene understanding. Proceedings of the National Academy of Sciences of the
United States of America, 110(45):18327-18332, 11 2013.

Kelsey R Allen, Kevin A Smith, and Joshua B Tenenbaum. Rapid trial-and-error learning
with simulation supports flexible tool use and physical reasoning. Proceedings of the National
Academy of Sciences, 117(47):29302-29310, 2020.

Tomer D Ullman, Andreas Stuhlmiiller, Noah D Goodman, and Joshua B Tenenbaum.
Learning physical parameters from dynamic scenes. Cognitive psychology, 104:57-82, 2018.

19,31

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Pedro A Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero, Thomas Pouncy,
Samuel J Gershman, and Joshua B Tenenbaum. Human-level reinforcement learning through
theory-based modeling, exploration, and planning. arXiv preprint arXw:2107.12544, 2021.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:€253, 2017.

Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh Tenenbaum, and
Tomer Ullman. Modeling expectation violation in intuitive physics with coarse probabilistic
object representations. Adv. Neural Inf. Process. Syst., 32, 2019.

Shreya Saxena and John P Cunningham. Towards the neural population doctrine. Current
Opinion in Neurobiology, 55:103-111, 2019.

Naama Brenner, William Bialek, and Rob de Ruyter van Steveninck. Adaptive rescaling
maximizes information transmission. Neuron, 26(3):695-702, 2000.

Rishidev Chaudhuri, Berk Gergek, Biraj Pandey, Adrien Peyrache, and Ila Fiete. The intrinsic
attractor manifold and population dynamics of a canonical cognitive circuit across waking
and sleep. Nature Neuroscience, 22:1512-1520, 2019.

Sung Soo Kim, Hervé Rouault, Shaul Druckmann, and Vivek Jayaraman. Ring attractor
dynamics in the Drosophila central brain. Science, 356(6340):849-853, 2017.

J J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proc. Natl. Acad. Sci. U. S. A., 79(8):2554-2558, April 1982.

J J Hopfield and D W Tank. Computing with neural circuits: a model. Science, 233(4764):625—
633, August 1986.

Vishwa Goudar and Dean V Buonomano. Encoding sensory and motor patterns as time-
invariant trajectories in recurrent neural networks. Elife, 7:e31134, March 2018.

Jason Z. Kim and Dani S. Bassett. A neural machine code and programming framework for
the reservoir computer. Nature Machine Intelligence, 5(6), 2023.

David Sussillo and Larry F Abbott. Generating coherent patterns of activity from chaotic
neural networks. Neuron, 63(4):544-557, 2009.

Steven Strogatz, Mark Friedman, A John Mallinckrodt, and Susan McKay. Nonlinear dynamics
and chaos: With applications to physics, biology, chemistry, and engineering. Comput. Phys.
Commun., 8(5):532, 1994.

Subhodh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation
through neural population dynamics. Annual Review of Neuroscience, 43:249-275, 2020.

Joshua I. Glaser, Ari S. Benjamin, Raeed H. Chowdhury, Matthew G. Perich, Lee E. Miller,
and Konrad P. Kording. Machine Learning for Neural Decoding. eNeuro, 7(4):0506-19, 7
2020.

Mehrdad Jazayeri and Arash Afraz. Navigating the neural space in search of the neural code.
Neuron, 93(5):1003-1014, 2017.

Steven P. Wise, Driss Boussaoud, Paul B. Johnson, and Roberto Caminiti. Premotor and
parietal cortex: Corticocortical connectivity and combinatorial computations. Annual Review
of Neuroscience, 20:25-42, 1997.

Seng Bum Michael Yoo, Jiaxin Cindy Tu, Steven T Piantadosi, and Benjamin Yost Hayden.
The neural basis of predictive pursuit. Nature neuroscience, 23(2):252-259, 2020.

20/B1]

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

50.

51.

92.

53.

54.

55.

56.

o7.

o8.

59.

60.

61.

62.

63.

Shigeru Obayashi, Tetsuya Suhara, Koichi Kawabe, Takashi Okauchi, Jun Maeda, Yoshihide
Akine, Hirotaka Onoe, and Atsushi Iriki. Functional Brain Mapping of Monkey Tool Use.
NeuroImage, 14(4):853-861, 10 2001.

Aran Nayebi, Rishi Rajalingham, Mehrdad Jazayeri, and Guangyu Robert Yang. Neural
Foundations of Mental Simulation: Future Prediction of Latent Representations on Dynamic
Scenes. Advances in Neural Information Processing Systems, 36:70548-70561, 12 2023.

Hamed Nili, Cai Wingfield, Alexander Walther, Li Su, William Marslen-Wilson, and Nikolaus
Kriegeskorte. A Toolbox for Representational Similarity Analysis. PLOS Computational
Biology, 10(4):1003553, 2014.

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to
grow a mind: Statistics, structure, and abstraction. science, 331(6022):1279-1285, 2011.

Maté Lengyel. Marr’s three levels of analysis are useful as a framework for neuroscience. The
Journal of Physiology, 602(9):1911-1914, 5 2024.

John P. Cunningham and Byron M. Yu. Dimensionality reduction for large-scale neural
recordings. Nature Neuroscience, 17(11):1500-1509, 10 2014.

Chris L. Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as inverse
planning. Cognition, 113(3):329-349, December 2009.

Russell A Epstein, Eva Zita Patai, Joshua B Julian, and Hugo J Spiers. The cognitive map in
humans: spatial navigation and beyond. Nat. Neurosci., 20(11):1504-1513, October 2017.

V Bush, F D Gage, and H R Stewart. A continuous integraph. J. Franklin Inst., 203(1):63-84,
January 1927.

Tiago Branco and Peter Redgrave. The neural basis of escape behavior in vertebrates. Annual
review of neuroscience, 43(1):417-439, 2020.

Federico Claudi, Dario Campagner, and Tiago Branco. Innate heuristics and fast learning
support escape route selection in mice. Current Biology, 32(13):2980-2987, 2022.

Elizabeth S Spelke. Précis of what babies know. Behavioral and Brain Sciences, 47:¢120,
2024.

Steven H. Strogatz. NONLINEAR DYNAMICS AND CHAOS: With Applications to Physics,
Biology, Chemistry, and Engineering. Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering, pages 1-513, 1 2018.

Ken Caluwaerts, Francis Wyffels, Sander Dieleman, and Benjamin Schrauwen. The spectral
radius remains a valid indicator of the Echo state property for large reservoirs. Proceedings of
the International Joint Conference on Neural Networks, 2013.

21/31]

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

Supplementary Material

Details of Programming Reservoir Computer

In brief, the framework for programming the weights and connectivity of a reservoir computer [42]
is as follows:

1. Define the Network Update Equation

Here, we define our to-be-programmed Reservoir Computer via the update equation, describing how
each latent unit evolves in time, as

1. " . " 7

—7(t) = —7(t) 4+ tanh(A7(t) + BZ(t) + d) (1)

where, given a reservoir with N neurons, M inputs, and P outputs

1. v € R! is the continuous time/rate constant

2. 7(t) € RV*! (state vector) describes the value of each neuron within the network at time ¢
3. Z(t) € RM*! are the inputs to the reservoir at time ¢

4. A € RV*¥ is the adjacency matrix describing the connectivity of the reservoir units.

5. B € RV*M s the “read-in” matrix describing the exogenous connectivity into the reservoir.

6. d e RN X1 is the constant bias vector for each unit in the reservoir.

2. Initialize and Solve this Differential Equation

We solve our update equation, which is a differential equation, at a randomly chosen operating
point, r* ~ U, where U(—0.5,0.5) is a uniform distribution between [—0.5,+0.5]. This yields an
approximation of the state vector, 7(t), as a function of its symbolic inputs and the time derivative(s)
of these inputs, yielding o

7(t) =~ h(Z,Z,Z,...) (2)

3. Decompile into Dynamical Primitives

Once solved at a given operating point, and for a randomly initialized set of connection weights
(A, B) ~ U(—0.5,0.5) and biases d = tanh™'(r*) — Ar*, we can use an integral expansion to
decompile the reservoir into a set of expansion bases, R € RN*K “and a symbolic set of inputs,
Tsym € REX where h(Z, T, Z,...) — Ry, Here we use a multivariate Maclaurin series expansion,
M [h(Z, T)], where k is the order of the expansion, defined as

2n

k
o 1 d™h
Mh@) =D 0r D G e | e ®)

m=0 01,0250 yim=1 0

]

where 7 = [, #]T € R?M concatenates position and velocity terms of our input space:

o 7= [m T2 l’s]Ty 7= [551 Tp ¢3]T
. .. T
o U= [ml Ty T3 T1 X2 903]

22,31

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

755

756

757

758

This method yields a set of weights, corresponding to combinatorial /multivariate polynomial s
coefficients of our symbolic inputs. For example, if we have M = 3 inputs to our network, take 7o
information up to the first time derivative of our inputs, and want expansion up to order k = 3,
then: 762

0

6
1 9%h
() + 55 2. Fuidu; |19
1,j=1

(vivjvg)

0

=[n(0,0) , Jhlg , Hhlg , Tijxhls
1

(I1,$27$3,i'1,i32,i73)
. 2 .2
X | (r122, T123, 181 - . ., X5, TF)

- Rfsy’rn (4)

Where (Jh|g, Hh|g, T;,j,1kh|5) are the Jacobian, Hessian, and third-order terms of our expansion, 7
respectively, and the basis vector &, contains all monomials up to degree 3 in the components of 764
U; R contains the corresponding coefficients from the Jacobian, Hessian, and third-order derivative e
tensor evaluated at 7 = 0. 766

4. Define Dynamical Variables 767

We next define a set of dynamical variables Z(t) € R”*! that encode the desired physics-based 7

representation. Each dynamical variable z; is governed by a differential equation of the form: 769
Z2; = fi(Z,1) (5)
where f; defines the dynamics for the i-th variable. These equations can include: 0

o Constant registers: Variables with Z; = 0 that maintain initial conditions throughout the m
simulation m

e Linear dynamics: Variables following 2; = az; + Bz + ... 3

e Nonlinear dynamics: Variables with polynomial or other nonlinear terms, e.g., ; = az;—fBz3 m

e Coupled dynamics: Variables whose evolution depends on multiple other variables through s
complex interaction terms 776

5. Compile The Resulting Dynamical Algorithm m

Given our dynamical algorithm (i.e., the 12 dynamical variables 7= f(2)), we create a target s
observation matrix O € RPXK by evaluating the same monomial basis functions used in our o

expansion on the target dynamics: 780
0 = My[f(2)] (6)

This yields a matrix where each row corresponds to a dynamical variable expressed in the same =

basis as our reservoir expansion. 782

2331

6. Program the Readout Matrix

We solve for the optimal readout matrix W € RP*N that maps the reservoir state to our dynamical
algorithm:

W* = arg mwi/n [WR - O|% (7)
where || - || denotes the Frobenius norm. This least-squares problem has the closed-form solution:
W* = OR' (8)

where RT is the Moore-Penrose pseudoinverse of R.

7. Close the Loop

Finally, we close the loop by partitioning the input matrix B into recurrent and exogenous compo-
nents:

BZ = BT + BT (9)
where & = W7 represents the recurrent feedback and 7 represents any external inputs. This yields
the programmed reservoir computer:

1. _ o
—7(t) = —7(t) + tanh(A*7(t) + BZ(t) + d) (10)
v
where A* = BW is the effective connectivity matrix encoding our dynamical algorithm.
This framework enables the analytical embedding of arbitrary dynamical systems into reser-
voir computer, transforming differential equations into distributed connectivity patterns that au-
tonomously execute the desired computations. The reader can consult ref. [42] for further details.

8. Initialize and Simulate

To simulate a specific instance of a Pong condition:

1. Set initial conditions 2y through the input channel and evolve the network from the global
operating point until convergence (r}(t) — 77 (t — 1) < €). This establishes the conditional
operating point corresponding to a particular Pong condition:

—

7¥ = tanh(BZy + d) (11)

2. Numerically integrate the programmed reservoir computer equation from #; using standard
ODE solvers (e.g., Runge-Kutta methods)

1
—7 = —r + tanh(Ar + Bz + d) (12)
v

where we begin at r = r] to simulate a Pong condition with the programmed adjacency
A=A*=BW.

3. Read out the observable state through the programmed readout: Z(t) = W(t)

24/31]

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

Pseudo-Code of the Board Simulation

A. Object-Oriented Programming Constructor for the Simulation B. Main Function for Running the Simulation

obj BoardState(self, ballX = float, ballY = float, velX = float, velY = float) def main(tMax, ballx,bally,velX,velY)

self.ballX = ballX; state = BoardState(ballX = float, ballY = float, velX = float, velY = float)
self.ballY = ballY;

self.velX = velX; t=0

self.velX = velX; while t < tMax

state = colLeft(state)

Initial conditions (provided
by external input)

self.velXSample = sign(velX) _ N
self.velXReflection = -sign(velX) CH o CLIGIR)
self.velYSample = sign(velY) state = colTop(state)

self.velYReflection = -sign(velY) state = colBottom(state)

Initial state (determined by
self.colLeft =0

the initial conditions) state = updateX(state)

self.colRight =0
self.colTop =0 state = updateY(state)
self.colBottom =0 =1

return state end

C. Pseudo-Code Analogy of Dynamical Recurrent Logic

Collision Detection

Non-linear Velocity Flip if Collision is Detected

def flipSignXRight(state):

Linear Position Update Using Hysteretic Velocity State

def colRight(state):
2 N def updateX(state):
if (state.ballX - wallRight) < err state.velXSample = -state.velXSample; - 5
flipSignXRight(state) flipSignXLeft(state) it;ate.ba;gw state.ballX+ (self.velXSample)state.velX;
return state return state
def colLeft(state): def flipSignXTLeft(state):
if (state.ballX - wallLeft) < err state.velXReflection = -state.velXReflection
flipSignXLeft(state) flipSignXRight(state)
return state return state
def colTop(state): def flipSignYTop(state):
A def updateY(state):
if (state.ballY - wallTop) < err state.velYSample = -state.velYSample B 3
flipSign¥Top(state) flipSignYBottom(state) if;abe.ba;lsw state.ballY + (self.velYSample)state.velY;
return state return state
def colBottom(state): def flipSignYBottom(state):
if (state.ballY - wallBottom) < err state.velYReflection = -state.velYReflection;
flipSignYBottom (state) flipSignYTop(state)
return state return state

Supplementary Figure 1. Pseudocode of the physics-based representation of the
gameboard, which underlies our dSPM construction. This figure presents an intuitive
pseudocode representation to illustrate how the 12 coupled differential equations (Equations (%)
through (212)) described in the Methods. (A) An object-oriented programming constructor of the
board state, showing how initial conditions map to the initial (z,y) position of the ball within the
game board and the constant velocity registers (21,22 from equations 21,22 in Methods) and initialize
the hysteretic state variables. (B) Main loop for unfolding the board dynamics. (C) Pseudocode
modules corresponding to the computational blocks 2-4 of the Methods section: Collision Detection
(yellow) represents the dynamics of zg-z12 (Equations (Z9)-(212) in Methods), which implement
threshold-based collision detection; Non-linear Velocity Flip (blue) illustrates the hysteretic NAND
gate dynamics of z5-zg (Equations (25)-(2s) in Methods) that maintain velocity sign memory through
bistable attractors; Linear Position Update (purple) shows how z3 and z4 (Equations (23) and (24)
in Mehtods) integrate velocity to update position. These functions make recurrent calls to each
other. In dSPM, this physics-based representation is analytically embedded into the connectivity
matrix of a reservoir computer, A = BW .

25 B1]

807

A. dSPM implements dynamical logic by changing the topology of latent manifolds in the programmed reservoir.

. 3 . 3 g
1x=g(x —ax FX= bx—ax’+f(t)
[4
&(t) changes the weight on the linear term to activate a pitchfork bifurcation. Its value is (1) is a dynamic bias term on the constant weight effecting the y-intercept. Its value is Time constant, 7, changes the local sensitivity and
coupled to the numberof the fixed points and their stability implementing a state coupled to the location of the fixed point implementing Boolean logic within the dSPM resolution-scale near fixed points relative to the reservoir’s
change within the dSPM. global time constant
One stable fixed-point Bifurcation to three fixed-points One stable positive fixed-point One stable negative fixed-point

J(—gu)<0 w050 - i()>() * - f()<()
-—g®=0 \

Globally stable fixed-pointat Oigin izes and two and Positive fixed point value used to Negative fixed point value used 0<T<le= T-l= T>1
origin non-zero stable fixed-points emerge. signify Boolean 1 within dSPM to signify Boolean 0 within dSPM Lower Sensitivity to Higher Sensitivity to
Local Changes Local Changes
B. Dynamical logic underlying the 2D Newtonian mechanics underlying the ball interception task.
Constant Acceleration Linear Velocity Update Symbolic functions implementing recurrent logic
. . . . underlying the dSPM algorithm for ball interception task
2=02 2,=0z Z3=+12 + 2,25 Z=+z+ 22
Hysteretic switch (%,) use dynamic Boolean logic (/) coupled with the _ _
pitchfork bifurcan’gns (g,#) on dynamic collision detectors (Z,.,,) g(x) =T+ (C 8)
. 3 . 3 2 2
I3 —
TR= —Oé(zs) +B(zs) + S(#,24) 7 29— —(Zo) +g(24)(29) ﬁ’<x’y)—(x - px) + (y - p.r/) - (W_U>
| 2 3 Lo 3
Fa= —alz) +B(2) + f(25,20) TR0= —(210)1+g(z4)(z1()) (z -y)y -1,
;) 3= — () (. y) = o IR T)
". 2= —0(27) + ﬂ(27) + f(zg’Zf)> jzn— _(Z“) + g(Z:,)(Z”) f“ Y) - 2y = Yo
Ly 3 . Ly o 3 int
R _a(Zx) + ﬂ(Zg) + f (27, Zm) TRe= (le) +/’Z(Z3 , %4)(Z“I)

Supplementary Figure 2. Example dynamical primitives for implementing symbolic representa-
tions. (A) Left two panels show the phase portraits of a controlled bifurcation with the equation
L& = g(t)z — aa®. The stable fixed point (attractor; filled circle) on the left transitions into two
stable fixed points and one unstable fixed points (repeller; unfilled circle) as g(t) becomes positive.
We use this type of bifurcation for collision detection in our gameboard representation. Middle
two panels show the same type of bifurcation but this time with its constant term time-varying,
%js = bx — ax® + f(t). The stable and unstable fixed points non-linearly transition as a function
of the time-varying constant term f(¢). In our gameboard representation, we use this type of
bifurcation for the velocity sign variable. Through these time varying coefficients (e.g., g(¢) and
f(t)), we can couple different dynamical variables and implement branching logic, linear velocity
dynamics, and other elements needed to represent the physical scenes and other structure-preserving
representations. The rightmost panel shows how the sensitivity of these dynamical primitives can be
changed by adjusting the value of 7. This rightmost panel is plotting the second plot from left (i.e.,
Li = g(t)x — az® for g(t) > 0) with different values of the time constant. (B) The full dynamical
algorithm, consisting of the 12 dynamical variables, as described in Methods.

26/B1]

Phase Portraits of the
Closed-loop Collision Ciruit Manifolds Simulatation State-Variable Read-Out

N .

Zi

Hidden State Time Evolution

H
=
I
2]

Q9

UoNBANOY HUN USPPIH

—z ° ()
—zz e z(l)
i o @

Supplementary Figure 3. Animated visualization of the dSPM dynamical algorithm and
reservoir state evolution (1000 units) implementing non-linear wall collision detection
and resolution. Left panel: Phase portraits of the collision circuit’s recurrent dynamics, showing
the theoretical nullclines (continuous curves) programmed via the polynomial-shift operators and
pitchfork bifurcations described in Methods (equations Z7-Zg, and Zg, which recurrently couple
to zo the symbolic representation of the y-position of the ball). The points represent the actual
instantaneous values of these dynamical variables as read out from the network state via Wr(t).
The blue and red curves show the hysteretic switch’s pair-dynamics (27 and Zg for vertical velocity),
implementing bistable memory. The yellow curve represents the collision detector, which transitions
between stable zero and non-zero fixed points when the ball approaches the boundary. The cross-
coupling between collision detection and velocity sign variables implements the NAND gate logic
triggering velocity reversal upon collision. Top right panel: Real-time ball trajectory on the board,
computed from the linear position update equations (Zs, 24) that integrate the velocity components
stored in the hysteretic switches. The red trace shows the ball’s path. The wall collision triggers
a transition in the dynamical landscape (left panel), flipping the appropriate velocity component
while maintaining the orthogonal component unchanged. Bottom right panel: High-dimensional
hidden state of PAN showing all N = 1000 neuron activations 7(t) € RY at each time point.
The color gradient (from dark blue to light cyan) encodes individual neuron activities. Despite
this high-dimensional embedding, the network autonomously constrains its dynamics to the 12-
dimensional manifold specified by the programmed differential equations. The Ls-norm solution
that creates the programmed adjacency (A = EW) during the compilation step, distributes the
low-rank symbolic/dynamical representations heterogeneously across the population-rank of the
network. The relatively uniform distribution of activities indicates that the network utilizes its
full representational capacity rather than sparse coding, consistent with such a Ls-norm based
analytical encoding. (NOTE: To play the animation within the PDF, please use Adobe Acrobat.
This animation is also included as a Supplementary Video.)

27 1]

Stability of Latent Manifolds Based on dSPM’s Reservoir Computer Size

A. Projection Error in Rank-Deficient Reservoirs Post Trial Start B. RMSE vs Number of Reservoir Latents During
Example Trials Across 300, 500, and 1000 latent unit dSPM reservoirs Mean and standard deviation across all models (n=50) and trials (n=79)
Game Board Viewing Angle Used In Primate Trials . .
(-10°,+10°) (+10°,+10°) Short Time Horizon (7 ms)
(i) 7 0% Short-time horizon shows
| e exponential divergence from initial
6 condition as a function of number
” Angular of dSPM reservoir latent units
Velocity 5
| Error w
” o 4 (unstable)
_ 9 g s
” 500 Units 7 500 Latent units
1000 Units (b Magnitude 2| (less stable)
l‘ - T Velocity
0A Ball Trajectory Error 1 1000 Latent unlts
pr ! o (stable)
2 3 4 5 3 7
(10°10) +10°-10% Time (ms) After Initial Condition “Loaded”
10°.-10° +10°-10°
(i) v R . Longer Time Horizon (500 ms)
i,

Long-time horizon illustrates
representational (off-manifold)
instability of rank-deficient
dSPM reservoirs.

15 (unstable)
500 Latent units

05 (less stable)

25

9}
RMSE
- L*)

=)

1000 Latent units
(stable)

[L T 0 05

Two exemplar trials illustrating non-linear instability around latent . 100 200 300 400 500

collision detector manifold Time (ms) After Initial Condition “Loaded”

Supplementary Figure 4. Stability analysis of dSPM with varying numbers of hidden
units. (A) Projection error visualization in networks after trial start, showing example trajectories
from dSPM reservoir computer with 300 (yellow), 500 (red), and 1000 (blue) hidden units. The
main panel displays ball trajectories overlaid on the board, with cyan dots indicating the actual ball
trajectory. Two types of errors emerge: angular velocity errors (6,¢) and velocity magnitude errors
(trajectories going farther/faster than ground truth in the same amount of time). Insets (i-iii) show
zoomed views of critical trajectory segments where non-linear instabilities manifest around the latent
collision detector manifold, visible in the under-parameterized 300 and 500 unit networks’ trajectories.
(B) Root Mean Square Error (RMSE) quantification as a function of dSPM size during the initial
trial phase, averaged across 50 models and 79 conditions per model size. Short time horizon (7
ms; top panel) reveals exponential divergence from initial conditions, with error growth inversely
proportional to network size. The 300-unit network (unstable) shows rapid divergence, while the
1000-unit network remains stable. Longer time horizon (500 ms; bottom panel) demonstrates the
representational consequences of rank deficiency, where off-manifold instabilities in smaller networks
lead to recurrent propagation of trajectory errors. The 1000-unit network maintains near-zero RMSE
throughout, indicating sufficient expressivity to stably embed the 12-dimensional dynamical manifold,
while the 300 and 500-unit networks exhibit persistent drift from the programmed dynamics.

28 B1]

808

Number of Bounces Affects Ball Endpoint Prediction at 250 ms

Zero Bounce Trials

—

One Bounce Trials

N7

(

Endpoint Decoding Correlation

Condition

1

0.8

0.6

0.4

0.2

0

-0.2

1

Neural Data

. | Next Time-Point

—

Paddle Only

H

Linear Map

Supplementary Figure 5. Effect of trajectory complexity on rapid (at 250 milliseconds) ball
endpoint prediction. DMFC populations show highly accurate ball endpoint prediction for both
within zero-bounce and within one-bounce trials, with slightly better performance on the less
complex zero-bounce trials. dSPM recapitulates DMFC-like robust prediction for both condition
types. Task-optimized RNNs show generally poor performance, whereas the Linear Map also recovers
DMFC-like pattern.

29/B1]

Divergence of the Linear Map Heuristic from dSPM and DMFC

A. Cross-Bounce Condition Decoding Analysis B. Shuffled-Trial Decoding Analysis

1r Train 0/1-Bounce, Test 1/0-Bounce 1

os b — -_ 08|
° 06 |
§ 06|

04|
g o
3 02
Q@

0.2

-02 F

300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
Time Bin (ms) Time Bin (ms)
Linear Map m= Neural Data dSPM

Supplementary Figure 6. Heuristic strategies versus dynamical computation in DMFC.
(A) To distinguish between the Linear Map heuristic and dSPM’s nonlinear dynamical attractors,
we leveraged a critical difference in their predictions. A linear mapping from the ball’s current
position and velocity to its final position represents a simple heuristic solution to the interception
task — one that does not require simulation of intermediate dynamics and that is accurate due to
the simplicity of the board (linear or piecewise linear trajectories across 0-bounce and 1-bounce
conditions). Decoders trained on 0-bounce conditions and tested on 1-bounce conditions (and vice
versa) reveal fundamentally different computational strategies between the Linear Map versus dSPM
and DMFC. All of these decoders are trained on a given time point (along the x-axis) to predict
the ball endpoint. The Linear Map heuristic from ground truth (z,y, Az, Ay) (yellow) maintains
high decoding generalization (~ 0.8 correlation) throughout the trial.In contrast, both neural data
(red) and dSPM (cyan) show poor initial generalization that worsens over time, with correlation
dropping below 0.2 within 500 ms. We also note an important difference between dSPM and DMFC:
In dSPM, the decoder’s generalization performance improves quickly past 500 ms, whereas in DMFC
it either stays flat or improves very gradually. Together, these results demonstrate that despite the
availability of a simpler heuristic, DMFC implements trajectory-specific nonlinear dynamics. (B) A
separate, heuristic possibility is that the endpoint decoding is due to some spurious correlations
in the dataset. To rule out this possibility, we train and test ball endpoint decoders with the
condition labels randomly shuffled. When trial labels are randomly shuffled, all three decoders
fail (correlations near zero), confirming that successful decoding is not due to spurious correlations
throughout our analysis. Error bands represent SEM.

30/31]

809

All Residualizion Pairings for RSA Between Brain, dSPM Reservoirs, and Alternative Models

08
c 06 |
1]
£
5 -
; 1l
o
2
5 04 N
©
5 N\
5 N\
° N
02 \
0 N
-0.1
dSPM Reservoirs Next Time Point Models Linear Map Paddle Only Models
""" no residualization [ro residualization I o residualization [no residualization
[next time-point [dSPM reservoirs I oSPM reservoirs [dSPM reservoirs
[paddie only I paddie only I = time-point [rext time-point
[/inear map [/inear map [racidle only [N /inear map

_ next time-point & linear map _ dSPM reservoirs & linear map _ dSPM & next time-point _ dSPM & next time-point
VZZTTTA next time-point & paddie only _ dSPM reservoirs & paddle only _ dSPM & paddle only ZZZZZZZ dSPM reservoirs & linear map
_ linear map & paddle only _ linear map & paddle only _ next time-point & paddle only _ next time-point & linear map
AT A1 [A1 I A A1

Supplementary Figure 7. The full set of RSA residualization results. The dSPM model explains
more variance than other models and most of this variance is orthogonal to what other models
can explain. The reverse is not true: dSPM, for the most part, subsumes what can be explained
by the task-optimized RNNs and the task-performant linear map heuristic. (For the paddle-only
model, because it’s essentially uncorrlated from neural data, our partial regression analysis “pumps
in information”, leading to the counterintuitive pattern of increased variance after residualization.)

3131

	anm0:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

